Mustafa Fayadoglu, Elif Fayadoglu, Sevda Er, A Tansu Koparal, A Savas Koparal
{"title":"用/不用超声技术测定水消毒中含银、铜纳米粒子的生物活性","authors":"Mustafa Fayadoglu, Elif Fayadoglu, Sevda Er, A Tansu Koparal, A Savas Koparal","doi":"10.1007/s40201-022-00839-6","DOIUrl":null,"url":null,"abstract":"<div><p>The final and most crucial step in obtaining clean water is disinfection. More innovative methods of water disinfection have recently been sought. Water disinfection is a promising application for nanoparticles as disinfectants. As a contribution to the literature, biofilm and metal-containing nanoparticles as antiadhesion inhibitors were used in conjunction with ultrasound in this study. The microbroth dilution test was used to reveal the microbiological antibacterial activities of different concentrations of AgNO3 and CuCl2 containing nanoparticles against the Escherichia coli ATCC 25,922 strain, which is an indicator bacterium in water systems. Antibiofilm activities were then investigated using biofilm attachment and biofilm inhibition tests. The inhibitory effect of nanoparticle ultrasonic waves on biofilm contamination was determined using a novel approach. Human keratinocyte cells (HaCaT cell line) were used in cell culture studies after water disinfection, and their cytotoxic effects were demonstrated using the MTT assay. The findings suggest that the nanoparticles utilized might be a viable choice for water disinfection applications. Furthermore, employing ultrasound at low doses with nanoparticles resulted in greater results. One feasible option is to employ nanoparticles to cleanse water without producing cytotoxicity.</p></div>","PeriodicalId":628,"journal":{"name":"Journal of Environmental Health Science and Engineering","volume":"21 1","pages":"73 - 83"},"PeriodicalIF":3.0000,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40201-022-00839-6.pdf","citationCount":"2","resultStr":"{\"title\":\"Determination of biological activities of nanoparticles containing silver and copper in water disinfection with/without ultrasound technique\",\"authors\":\"Mustafa Fayadoglu, Elif Fayadoglu, Sevda Er, A Tansu Koparal, A Savas Koparal\",\"doi\":\"10.1007/s40201-022-00839-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The final and most crucial step in obtaining clean water is disinfection. More innovative methods of water disinfection have recently been sought. Water disinfection is a promising application for nanoparticles as disinfectants. As a contribution to the literature, biofilm and metal-containing nanoparticles as antiadhesion inhibitors were used in conjunction with ultrasound in this study. The microbroth dilution test was used to reveal the microbiological antibacterial activities of different concentrations of AgNO3 and CuCl2 containing nanoparticles against the Escherichia coli ATCC 25,922 strain, which is an indicator bacterium in water systems. Antibiofilm activities were then investigated using biofilm attachment and biofilm inhibition tests. The inhibitory effect of nanoparticle ultrasonic waves on biofilm contamination was determined using a novel approach. Human keratinocyte cells (HaCaT cell line) were used in cell culture studies after water disinfection, and their cytotoxic effects were demonstrated using the MTT assay. The findings suggest that the nanoparticles utilized might be a viable choice for water disinfection applications. Furthermore, employing ultrasound at low doses with nanoparticles resulted in greater results. One feasible option is to employ nanoparticles to cleanse water without producing cytotoxicity.</p></div>\",\"PeriodicalId\":628,\"journal\":{\"name\":\"Journal of Environmental Health Science and Engineering\",\"volume\":\"21 1\",\"pages\":\"73 - 83\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40201-022-00839-6.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Health Science and Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40201-022-00839-6\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Health Science and Engineering","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s40201-022-00839-6","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Determination of biological activities of nanoparticles containing silver and copper in water disinfection with/without ultrasound technique
The final and most crucial step in obtaining clean water is disinfection. More innovative methods of water disinfection have recently been sought. Water disinfection is a promising application for nanoparticles as disinfectants. As a contribution to the literature, biofilm and metal-containing nanoparticles as antiadhesion inhibitors were used in conjunction with ultrasound in this study. The microbroth dilution test was used to reveal the microbiological antibacterial activities of different concentrations of AgNO3 and CuCl2 containing nanoparticles against the Escherichia coli ATCC 25,922 strain, which is an indicator bacterium in water systems. Antibiofilm activities were then investigated using biofilm attachment and biofilm inhibition tests. The inhibitory effect of nanoparticle ultrasonic waves on biofilm contamination was determined using a novel approach. Human keratinocyte cells (HaCaT cell line) were used in cell culture studies after water disinfection, and their cytotoxic effects were demonstrated using the MTT assay. The findings suggest that the nanoparticles utilized might be a viable choice for water disinfection applications. Furthermore, employing ultrasound at low doses with nanoparticles resulted in greater results. One feasible option is to employ nanoparticles to cleanse water without producing cytotoxicity.
期刊介绍:
Journal of Environmental Health Science & Engineering is a peer-reviewed journal presenting timely research on all aspects of environmental health science, engineering and management.
A broad outline of the journal''s scope includes:
-Water pollution and treatment
-Wastewater treatment and reuse
-Air control
-Soil remediation
-Noise and radiation control
-Environmental biotechnology and nanotechnology
-Food safety and hygiene