高因子函数与素数和的和

IF 0.4 4区 数学 Q4 MATHEMATICS
Yuchen Ding, G. Zhou
{"title":"高因子函数与素数和的和","authors":"Yuchen Ding, G. Zhou","doi":"10.21136/CMJ.2023.0206-22","DOIUrl":null,"url":null,"abstract":"Let l ≽ 2 be an integer. Recently, Hu and Lü offered the asymptotic formula for the sum of the higher divisor function \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\sum\\limits_{1 \\leqslant {n_1},{n_2},...,{n_1} \\leqslant {x^{1/2}}} {{\\tau _k}(n_1^2 + n_2^2 + ... + n_1^2),} $$\\end{document} where τk (n) represents the kth divisor function. We give the Goldbach-type analogy of their result. That is to say, we investigate the asymptotic behavior of the sum \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\sum\\limits_{1 \\leqslant {p_1},p2,...,{p_1} \\leqslant x} {{\\tau _k}({p_1} + {p_2} + ... + {p_l}),} $$\\end{document} where p1, p2, …, pl are prime variables.","PeriodicalId":50596,"journal":{"name":"Czechoslovak Mathematical Journal","volume":"73 1","pages":"621 - 631"},"PeriodicalIF":0.4000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sum of higher divisor function with prime summands\",\"authors\":\"Yuchen Ding, G. Zhou\",\"doi\":\"10.21136/CMJ.2023.0206-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let l ≽ 2 be an integer. Recently, Hu and Lü offered the asymptotic formula for the sum of the higher divisor function \\\\documentclass[12pt]{minimal} \\\\usepackage{amsmath} \\\\usepackage{wasysym} \\\\usepackage{amsfonts} \\\\usepackage{amssymb} \\\\usepackage{amsbsy} \\\\usepackage{mathrsfs} \\\\usepackage{upgreek} \\\\setlength{\\\\oddsidemargin}{-69pt} \\\\begin{document}$$\\\\sum\\\\limits_{1 \\\\leqslant {n_1},{n_2},...,{n_1} \\\\leqslant {x^{1/2}}} {{\\\\tau _k}(n_1^2 + n_2^2 + ... + n_1^2),} $$\\\\end{document} where τk (n) represents the kth divisor function. We give the Goldbach-type analogy of their result. That is to say, we investigate the asymptotic behavior of the sum \\\\documentclass[12pt]{minimal} \\\\usepackage{amsmath} \\\\usepackage{wasysym} \\\\usepackage{amsfonts} \\\\usepackage{amssymb} \\\\usepackage{amsbsy} \\\\usepackage{mathrsfs} \\\\usepackage{upgreek} \\\\setlength{\\\\oddsidemargin}{-69pt} \\\\begin{document}$$\\\\sum\\\\limits_{1 \\\\leqslant {p_1},p2,...,{p_1} \\\\leqslant x} {{\\\\tau _k}({p_1} + {p_2} + ... + {p_l}),} $$\\\\end{document} where p1, p2, …, pl are prime variables.\",\"PeriodicalId\":50596,\"journal\":{\"name\":\"Czechoslovak Mathematical Journal\",\"volume\":\"73 1\",\"pages\":\"621 - 631\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Czechoslovak Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.21136/CMJ.2023.0206-22\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Czechoslovak Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/CMJ.2023.0206-22","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Let l ≽ 2 be an integer. Recently, Hu and Lü offered the asymptotic formula for the sum of the higher divisor function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum\limits_{1 \leqslant {n_1},{n_2},...,{n_1} \leqslant {x^{1/2}}} {{\tau _k}(n_1^2 + n_2^2 + ... + n_1^2),} $$\end{document} where τk (n) represents the kth divisor function. We give the Goldbach-type analogy of their result. That is to say, we investigate the asymptotic behavior of the sum \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum\limits_{1 \leqslant {p_1},p2,...,{p_1} \leqslant x} {{\tau _k}({p_1} + {p_2} + ... + {p_l}),} $$\end{document} where p1, p2, …, pl are prime variables.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sum of higher divisor function with prime summands
Let l ≽ 2 be an integer. Recently, Hu and Lü offered the asymptotic formula for the sum of the higher divisor function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum\limits_{1 \leqslant {n_1},{n_2},...,{n_1} \leqslant {x^{1/2}}} {{\tau _k}(n_1^2 + n_2^2 + ... + n_1^2),} $$\end{document} where τk (n) represents the kth divisor function. We give the Goldbach-type analogy of their result. That is to say, we investigate the asymptotic behavior of the sum \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum\limits_{1 \leqslant {p_1},p2,...,{p_1} \leqslant x} {{\tau _k}({p_1} + {p_2} + ... + {p_l}),} $$\end{document} where p1, p2, …, pl are prime variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Czechoslovak Mathematical Journal publishes original research papers of high scientific quality in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信