普通幂零原生束p进teichm均匀化的辛几何

IF 0.8 Q2 MATHEMATICS
Y. Wakabayashi
{"title":"普通幂零原生束p进teichm<e:1>均匀化的辛几何","authors":"Y. Wakabayashi","doi":"10.2140/tunis.2022.4.203","DOIUrl":null,"url":null,"abstract":"The aim of the present paper is to provide a new aspect of the $p$-adic Teichmuller theory established by S. Mochizuki. We study the symplectic geometry of the $p$-adic formal stacks $\\widehat{\\mathcal{M}}_{g, \\mathbb{Z}_p}$ (= the moduli classifying $p$-adic formal curves of fixed genus $g>1$) and $\\widehat{\\mathcal{S}}_{g, \\mathbb{Z}_p}$ (= the moduli classifying $p$-adic formal curves of genus $g$ equipped with an indigenous bundle). A major achievement in the (classical) $p$-adic Teichmuller theory is the construction of the locus $\\widehat{\\mathcal{N}}_{g, \\mathbb{Z}_p}^{\\mathrm{ord}}$ in $\\widehat{\\mathcal{S}}_{g, \\mathbb{Z}_p}$ classifying $p$-adic canonical liftings of ordinary nilpotent indigenous bundles. The formal stack $\\widehat{\\mathcal{N}}_{g, \\mathbb{Z}_p}^{\\mathrm{ord}}$ embodies a $p$-adic analogue of uniformization of hyperbolic Riemann surfaces, as well as a hyperbolic analogue of Serre-Tate theory of ordinary abelian varieties. In the present paper, the canonical symplectic structure on the cotangent bundle $T^\\vee_{\\mathbb{Z}_p} \\widehat{\\mathcal{M}}_{g, \\mathbb{Z}_p}$ of $\\widehat{\\mathcal{M}}_{g, \\mathbb{Z}_p}$ is compared to Goldman's symplectic structure defined on $\\widehat{\\mathcal{S}}_{g, \\mathbb{Z}_p}$ after base-change by the projection $\\widehat{\\mathcal{N}}_{g, \\mathbb{Z}_p}^{\\mathrm{ord}} \\rightarrow \\widehat{\\mathcal{M}}_{g, \\mathbb{Z}_p}$. We can think of this comparison as a $p$-adic analogue of certain results in the theory of projective structures on Riemann surfaces proved by S. Kawai and other mathematicians.","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2019-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Symplectic geometry of p-adic Teichmüller\\nuniformization for ordinary nilpotent indigenous bundles\",\"authors\":\"Y. Wakabayashi\",\"doi\":\"10.2140/tunis.2022.4.203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of the present paper is to provide a new aspect of the $p$-adic Teichmuller theory established by S. Mochizuki. We study the symplectic geometry of the $p$-adic formal stacks $\\\\widehat{\\\\mathcal{M}}_{g, \\\\mathbb{Z}_p}$ (= the moduli classifying $p$-adic formal curves of fixed genus $g>1$) and $\\\\widehat{\\\\mathcal{S}}_{g, \\\\mathbb{Z}_p}$ (= the moduli classifying $p$-adic formal curves of genus $g$ equipped with an indigenous bundle). A major achievement in the (classical) $p$-adic Teichmuller theory is the construction of the locus $\\\\widehat{\\\\mathcal{N}}_{g, \\\\mathbb{Z}_p}^{\\\\mathrm{ord}}$ in $\\\\widehat{\\\\mathcal{S}}_{g, \\\\mathbb{Z}_p}$ classifying $p$-adic canonical liftings of ordinary nilpotent indigenous bundles. The formal stack $\\\\widehat{\\\\mathcal{N}}_{g, \\\\mathbb{Z}_p}^{\\\\mathrm{ord}}$ embodies a $p$-adic analogue of uniformization of hyperbolic Riemann surfaces, as well as a hyperbolic analogue of Serre-Tate theory of ordinary abelian varieties. In the present paper, the canonical symplectic structure on the cotangent bundle $T^\\\\vee_{\\\\mathbb{Z}_p} \\\\widehat{\\\\mathcal{M}}_{g, \\\\mathbb{Z}_p}$ of $\\\\widehat{\\\\mathcal{M}}_{g, \\\\mathbb{Z}_p}$ is compared to Goldman's symplectic structure defined on $\\\\widehat{\\\\mathcal{S}}_{g, \\\\mathbb{Z}_p}$ after base-change by the projection $\\\\widehat{\\\\mathcal{N}}_{g, \\\\mathbb{Z}_p}^{\\\\mathrm{ord}} \\\\rightarrow \\\\widehat{\\\\mathcal{M}}_{g, \\\\mathbb{Z}_p}$. We can think of this comparison as a $p$-adic analogue of certain results in the theory of projective structures on Riemann surfaces proved by S. Kawai and other mathematicians.\",\"PeriodicalId\":36030,\"journal\":{\"name\":\"Tunisian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tunisian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/tunis.2022.4.203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunisian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/tunis.2022.4.203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文的目的是为望月建立的一元Teichmuller理论提供一个新的方面。我们研究了$p$-adic形式栈$\widehat{\mathcal{M}}_{g, \mathbb{Z}_p}$(=固定格$g bbbb1 $的分类$p$-adic形式曲线的模)和$\widehat{\mathcal{S}}_{g, \mathbb{Z}_p}$(=带固有束的$g$的分类$p$-adic形式曲线的模)的模几何。(经典)$p$-adic的Teichmuller理论的一个主要成就是构造了$\widehat{\mathcal{N}}_{g, \mathbb{Z}_p}^{\ mathm {ord}}$在$\widehat{\mathcal{S}}_{g, \mathbb{Z}_p}$分类$p$-adic正则提升中的轨迹$\widehat{\mathcal{N}}, $ mathbb{Z}_p}$。形式栈$\widehat{\mathcal{N}}_{g, \mathbb{Z}_p}^{\ mathm {ord}}$体现了双曲黎曼曲面均匀化的$p$-adic模拟,以及普通阿贝尔变的Serre-Tate理论的双曲模拟。本文通过投影$\widehat{\mathcal{M}} g, \mathbb{Z}_p}$,将$\widehat{\mathcal{M}} g, \mathbb{Z}_p}$的协切束$T^\vee_{\mathbb{Z}_p} $上定义的基变换后的$\widehat{\mathcal{S}} g, \mathbb{Z}_p}$上定义的Goldman的正则结构与$\widehat{\mathcal{N}} {g, \mathbb{Z}_p}$上定义的正则结构进行了比较。我们可以把这种比较看作是S. Kawai和其他数学家所证明的黎曼曲面上的投影结构理论中某些结果的$p$-adic类比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symplectic geometry of p-adic Teichmüller uniformization for ordinary nilpotent indigenous bundles
The aim of the present paper is to provide a new aspect of the $p$-adic Teichmuller theory established by S. Mochizuki. We study the symplectic geometry of the $p$-adic formal stacks $\widehat{\mathcal{M}}_{g, \mathbb{Z}_p}$ (= the moduli classifying $p$-adic formal curves of fixed genus $g>1$) and $\widehat{\mathcal{S}}_{g, \mathbb{Z}_p}$ (= the moduli classifying $p$-adic formal curves of genus $g$ equipped with an indigenous bundle). A major achievement in the (classical) $p$-adic Teichmuller theory is the construction of the locus $\widehat{\mathcal{N}}_{g, \mathbb{Z}_p}^{\mathrm{ord}}$ in $\widehat{\mathcal{S}}_{g, \mathbb{Z}_p}$ classifying $p$-adic canonical liftings of ordinary nilpotent indigenous bundles. The formal stack $\widehat{\mathcal{N}}_{g, \mathbb{Z}_p}^{\mathrm{ord}}$ embodies a $p$-adic analogue of uniformization of hyperbolic Riemann surfaces, as well as a hyperbolic analogue of Serre-Tate theory of ordinary abelian varieties. In the present paper, the canonical symplectic structure on the cotangent bundle $T^\vee_{\mathbb{Z}_p} \widehat{\mathcal{M}}_{g, \mathbb{Z}_p}$ of $\widehat{\mathcal{M}}_{g, \mathbb{Z}_p}$ is compared to Goldman's symplectic structure defined on $\widehat{\mathcal{S}}_{g, \mathbb{Z}_p}$ after base-change by the projection $\widehat{\mathcal{N}}_{g, \mathbb{Z}_p}^{\mathrm{ord}} \rightarrow \widehat{\mathcal{M}}_{g, \mathbb{Z}_p}$. We can think of this comparison as a $p$-adic analogue of certain results in the theory of projective structures on Riemann surfaces proved by S. Kawai and other mathematicians.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tunisian Journal of Mathematics
Tunisian Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信