S. A Matthews, H. A. S. Reid, D. Baker, D. S. Bloomfield, P. K. Browning, A. Calcines, G. Del Zanna, R. Erdelyi, L. Fletcher, I. G. Hannah, N. Jeffrey, L. Klein, S. Krucker, E. Kontar, D. M. Long, A. MacKinnon, G. Mann, M. Mathioudakis, R. Milligan, V. M. Nakariakov, M. Pesce-Rollins, A. Y. Shih, D. Smith, A. Veronig, N. Vilmer
{"title":"高能太阳——探测离我们最近的恒星上粒子加速的起源","authors":"S. A Matthews, H. A. S. Reid, D. Baker, D. S. Bloomfield, P. K. Browning, A. Calcines, G. Del Zanna, R. Erdelyi, L. Fletcher, I. G. Hannah, N. Jeffrey, L. Klein, S. Krucker, E. Kontar, D. M. Long, A. MacKinnon, G. Mann, M. Mathioudakis, R. Milligan, V. M. Nakariakov, M. Pesce-Rollins, A. Y. Shih, D. Smith, A. Veronig, N. Vilmer","doi":"10.1007/s10686-021-09798-6","DOIUrl":null,"url":null,"abstract":"<div><p>As a frequent and energetic particle accelerator, our Sun provides us with an excellent astrophysical laboratory for understanding the fundamental process of particle acceleration. The exploitation of radiative diagnostics from electrons has shown that acceleration operates on sub-second time scales in a complex magnetic environment, where direct electric fields, wave turbulence, and shock waves all must contribute, although precise details are severely lacking. Ions were assumed to be accelerated in a similar manner to electrons, but γ-ray imaging confirmed that emission sources are spatially separated from X-ray sources, suggesting distinctly different acceleration mechanisms. Current X-ray and γ-ray spectroscopy provides only a basic understanding of accelerated particle spectra and the total energy budgets are therefore poorly constrained. Additionally, the recent detection of relativistic ion signatures lasting many hours, without an electron counterpart, is an enigma. We propose a single platform to directly measure the physical conditions present in the energy release sites and the environment in which the particles propagate and deposit their energy. To address this fundamental issue, we set out a suite of dedicated instruments that will probe both electrons and ions simultaneously to observe; high (seconds) temporal resolution photon spectra (4 keV – 150 MeV) with simultaneous imaging (1 keV – 30 MeV), polarization measurements (5–1000 keV) and high spatial and temporal resolution imaging spectroscopy in the UV/EUV/SXR (soft X-ray) regimes. These instruments will observe the broad range of radiative signatures produced in the solar atmosphere by accelerated particles.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"54 2-3","pages":"335 - 360"},"PeriodicalIF":2.7000,"publicationDate":"2021-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-021-09798-6.pdf","citationCount":"1","resultStr":"{\"title\":\"The high-energy Sun - probing the origins of particle acceleration on our nearest star\",\"authors\":\"S. A Matthews, H. A. S. Reid, D. Baker, D. S. Bloomfield, P. K. Browning, A. Calcines, G. Del Zanna, R. Erdelyi, L. Fletcher, I. G. Hannah, N. Jeffrey, L. Klein, S. Krucker, E. Kontar, D. M. Long, A. MacKinnon, G. Mann, M. Mathioudakis, R. Milligan, V. M. Nakariakov, M. Pesce-Rollins, A. Y. Shih, D. Smith, A. Veronig, N. Vilmer\",\"doi\":\"10.1007/s10686-021-09798-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As a frequent and energetic particle accelerator, our Sun provides us with an excellent astrophysical laboratory for understanding the fundamental process of particle acceleration. The exploitation of radiative diagnostics from electrons has shown that acceleration operates on sub-second time scales in a complex magnetic environment, where direct electric fields, wave turbulence, and shock waves all must contribute, although precise details are severely lacking. Ions were assumed to be accelerated in a similar manner to electrons, but γ-ray imaging confirmed that emission sources are spatially separated from X-ray sources, suggesting distinctly different acceleration mechanisms. Current X-ray and γ-ray spectroscopy provides only a basic understanding of accelerated particle spectra and the total energy budgets are therefore poorly constrained. Additionally, the recent detection of relativistic ion signatures lasting many hours, without an electron counterpart, is an enigma. We propose a single platform to directly measure the physical conditions present in the energy release sites and the environment in which the particles propagate and deposit their energy. To address this fundamental issue, we set out a suite of dedicated instruments that will probe both electrons and ions simultaneously to observe; high (seconds) temporal resolution photon spectra (4 keV – 150 MeV) with simultaneous imaging (1 keV – 30 MeV), polarization measurements (5–1000 keV) and high spatial and temporal resolution imaging spectroscopy in the UV/EUV/SXR (soft X-ray) regimes. These instruments will observe the broad range of radiative signatures produced in the solar atmosphere by accelerated particles.</p></div>\",\"PeriodicalId\":551,\"journal\":{\"name\":\"Experimental Astronomy\",\"volume\":\"54 2-3\",\"pages\":\"335 - 360\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2021-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10686-021-09798-6.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10686-021-09798-6\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10686-021-09798-6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
The high-energy Sun - probing the origins of particle acceleration on our nearest star
As a frequent and energetic particle accelerator, our Sun provides us with an excellent astrophysical laboratory for understanding the fundamental process of particle acceleration. The exploitation of radiative diagnostics from electrons has shown that acceleration operates on sub-second time scales in a complex magnetic environment, where direct electric fields, wave turbulence, and shock waves all must contribute, although precise details are severely lacking. Ions were assumed to be accelerated in a similar manner to electrons, but γ-ray imaging confirmed that emission sources are spatially separated from X-ray sources, suggesting distinctly different acceleration mechanisms. Current X-ray and γ-ray spectroscopy provides only a basic understanding of accelerated particle spectra and the total energy budgets are therefore poorly constrained. Additionally, the recent detection of relativistic ion signatures lasting many hours, without an electron counterpart, is an enigma. We propose a single platform to directly measure the physical conditions present in the energy release sites and the environment in which the particles propagate and deposit their energy. To address this fundamental issue, we set out a suite of dedicated instruments that will probe both electrons and ions simultaneously to observe; high (seconds) temporal resolution photon spectra (4 keV – 150 MeV) with simultaneous imaging (1 keV – 30 MeV), polarization measurements (5–1000 keV) and high spatial and temporal resolution imaging spectroscopy in the UV/EUV/SXR (soft X-ray) regimes. These instruments will observe the broad range of radiative signatures produced in the solar atmosphere by accelerated particles.
期刊介绍:
Many new instruments for observing astronomical objects at a variety of wavelengths have been and are continually being developed. Furthermore, a vast amount of effort is being put into the development of new techniques for data analysis in order to cope with great streams of data collected by these instruments.
Experimental Astronomy acts as a medium for the publication of papers of contemporary scientific interest on astrophysical instrumentation and methods necessary for the conduct of astronomy at all wavelength fields.
Experimental Astronomy publishes full-length articles, research letters and reviews on developments in detection techniques, instruments, and data analysis and image processing techniques. Occasional special issues are published, giving an in-depth presentation of the instrumentation and/or analysis connected with specific projects, such as satellite experiments or ground-based telescopes, or of specialized techniques.