不对称悬浮石墨烯纳米网器件的热整流

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Fayong Liu, M. Muruganathan, Yu-Lun Feng, Shinichi Ogawa, Y. Morita, Chunmeng Liu, Jiayu Guo, Marek E. Schmidt, H. Mizuta
{"title":"不对称悬浮石墨烯纳米网器件的热整流","authors":"Fayong Liu, M. Muruganathan, Yu-Lun Feng, Shinichi Ogawa, Y. Morita, Chunmeng Liu, Jiayu Guo, Marek E. Schmidt, H. Mizuta","doi":"10.1088/2399-1984/ac36b5","DOIUrl":null,"url":null,"abstract":"Graphene-based thermal rectification was investigated by measuring the thermal transport properties of asymmetric suspended graphene nanomesh devices. A sub-10 nm periodic nanopore phononic crystal structure was successfully patterned on the half area of the suspended graphene ribbon by helium ion beam milling technology. The ‘differential thermal leakage’ method was developed for thermal transport measurement without disturbance from the leakage of electron current through the suspended graphene bridge. A thermal rectification ratio of up to 60% was observed in a typical device with a nanopore pitch of 20 nm. By increasing the nanopore pitch in a particular range, the thermal rectification ratio showed an increment. However, this ratio was degraded by increasing the environmental temperature. This experiment suggests a promising way to develop a high-performance thermal rectifier by using a phononic crystal to introduce asymmetry on homogeneous material.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2021-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Thermal rectification on asymmetric suspended graphene nanomesh devices\",\"authors\":\"Fayong Liu, M. Muruganathan, Yu-Lun Feng, Shinichi Ogawa, Y. Morita, Chunmeng Liu, Jiayu Guo, Marek E. Schmidt, H. Mizuta\",\"doi\":\"10.1088/2399-1984/ac36b5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphene-based thermal rectification was investigated by measuring the thermal transport properties of asymmetric suspended graphene nanomesh devices. A sub-10 nm periodic nanopore phononic crystal structure was successfully patterned on the half area of the suspended graphene ribbon by helium ion beam milling technology. The ‘differential thermal leakage’ method was developed for thermal transport measurement without disturbance from the leakage of electron current through the suspended graphene bridge. A thermal rectification ratio of up to 60% was observed in a typical device with a nanopore pitch of 20 nm. By increasing the nanopore pitch in a particular range, the thermal rectification ratio showed an increment. However, this ratio was degraded by increasing the environmental temperature. This experiment suggests a promising way to develop a high-performance thermal rectifier by using a phononic crystal to introduce asymmetry on homogeneous material.\",\"PeriodicalId\":54222,\"journal\":{\"name\":\"Nano Futures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2021-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Futures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2399-1984/ac36b5\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Futures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2399-1984/ac36b5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

通过测量不对称悬浮石墨烯纳米网器件的热传输特性,研究了基于石墨烯的热整流。利用氦离子束铣削技术在悬浮石墨烯带的半个区域成功地形成了亚10nm周期性纳米孔声子晶体结构。开发了“差热泄漏”方法,用于在没有电子电流通过悬浮石墨烯桥泄漏干扰的情况下进行热传输测量。在纳米孔间距为20nm的典型器件中观察到高达60%的热整流率。通过在特定范围内增加纳米孔间距,热整流比表现出增加。然而,随着环境温度的升高,这种比例降低了。该实验提出了一种很有前途的开发高性能热整流器的方法,即使用声子晶体在均匀材料上引入不对称性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal rectification on asymmetric suspended graphene nanomesh devices
Graphene-based thermal rectification was investigated by measuring the thermal transport properties of asymmetric suspended graphene nanomesh devices. A sub-10 nm periodic nanopore phononic crystal structure was successfully patterned on the half area of the suspended graphene ribbon by helium ion beam milling technology. The ‘differential thermal leakage’ method was developed for thermal transport measurement without disturbance from the leakage of electron current through the suspended graphene bridge. A thermal rectification ratio of up to 60% was observed in a typical device with a nanopore pitch of 20 nm. By increasing the nanopore pitch in a particular range, the thermal rectification ratio showed an increment. However, this ratio was degraded by increasing the environmental temperature. This experiment suggests a promising way to develop a high-performance thermal rectifier by using a phononic crystal to introduce asymmetry on homogeneous material.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Futures
Nano Futures Chemistry-General Chemistry
CiteScore
4.30
自引率
0.00%
发文量
35
期刊介绍: Nano Futures mission is to reflect the diverse and multidisciplinary field of nanoscience and nanotechnology that now brings together researchers from across physics, chemistry, biomedicine, materials science, engineering and industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信