基于顺序二次规划的多源微波工频协调变化温度均匀性优化

IF 1.6 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Biao Yang, Zemin Han, Cheng Cheng, Hao Gao, Zhaogang Wu
{"title":"基于顺序二次规划的多源微波工频协调变化温度均匀性优化","authors":"Biao Yang, Zemin Han, Cheng Cheng, Hao Gao, Zhaogang Wu","doi":"10.1515/htmp-2022-0279","DOIUrl":null,"url":null,"abstract":"Abstract The focus of this study is to regulate the variation in the input parameters of multiple microwave sources in a high-frequency multimode resonant heating system to achieve uniform heating. First, this study deeply expands the theoretical process of frequency change and proposes a frequency-shifting strategy with hot spot alternation to ensure that the temperature difference range of each hot spot does not continuously expand during the heating process. Then, a sequential quadratic programming algorithm is introduced to reconstruct the input power values to improve the heating efficiency according to the different microwave absorption efficiencies of the heated material at different frequencies. Finally, a numerical calculation model for multi-source microwave power-frequency cooperative heating is established based on the finite-element method, and the temperature uniformity index is effectively calculated. Numerical calculations show that the proposed method can improve the uniformity in single-material heating and multi-material heating cases by 56.8–94.3% and 44.4–76.6%, respectively, over that of fixed-frequency heating while achieving improved heating efficiency on the basis of frequency conversion.","PeriodicalId":12966,"journal":{"name":"High Temperature Materials and Processes","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature uniformity optimization with power-frequency coordinated variation in multi-source microwave based on sequential quadratic programming\",\"authors\":\"Biao Yang, Zemin Han, Cheng Cheng, Hao Gao, Zhaogang Wu\",\"doi\":\"10.1515/htmp-2022-0279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The focus of this study is to regulate the variation in the input parameters of multiple microwave sources in a high-frequency multimode resonant heating system to achieve uniform heating. First, this study deeply expands the theoretical process of frequency change and proposes a frequency-shifting strategy with hot spot alternation to ensure that the temperature difference range of each hot spot does not continuously expand during the heating process. Then, a sequential quadratic programming algorithm is introduced to reconstruct the input power values to improve the heating efficiency according to the different microwave absorption efficiencies of the heated material at different frequencies. Finally, a numerical calculation model for multi-source microwave power-frequency cooperative heating is established based on the finite-element method, and the temperature uniformity index is effectively calculated. Numerical calculations show that the proposed method can improve the uniformity in single-material heating and multi-material heating cases by 56.8–94.3% and 44.4–76.6%, respectively, over that of fixed-frequency heating while achieving improved heating efficiency on the basis of frequency conversion.\",\"PeriodicalId\":12966,\"journal\":{\"name\":\"High Temperature Materials and Processes\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Temperature Materials and Processes\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/htmp-2022-0279\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperature Materials and Processes","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/htmp-2022-0279","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究的重点是调节高频多模谐振加热系统中多个微波源输入参数的变化,以实现均匀加热。首先,本研究深入扩展了频率变化的理论过程,提出了热点交替的移频策略,以保证在加热过程中各热点的温差范围不会不断扩大。然后,根据被加热材料在不同频率下的不同微波吸收效率,引入顺序二次规划算法重构输入功率值,以提高加热效率。最后,基于有限元法建立了多源微波工频协同加热的数值计算模型,有效地计算了温度均匀性指标。数值计算表明,该方法在单材料加热和多材料加热情况下,加热均匀性比定频加热分别提高56.8-94.3%和44.4-76.6%,同时在变频的基础上提高了加热效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temperature uniformity optimization with power-frequency coordinated variation in multi-source microwave based on sequential quadratic programming
Abstract The focus of this study is to regulate the variation in the input parameters of multiple microwave sources in a high-frequency multimode resonant heating system to achieve uniform heating. First, this study deeply expands the theoretical process of frequency change and proposes a frequency-shifting strategy with hot spot alternation to ensure that the temperature difference range of each hot spot does not continuously expand during the heating process. Then, a sequential quadratic programming algorithm is introduced to reconstruct the input power values to improve the heating efficiency according to the different microwave absorption efficiencies of the heated material at different frequencies. Finally, a numerical calculation model for multi-source microwave power-frequency cooperative heating is established based on the finite-element method, and the temperature uniformity index is effectively calculated. Numerical calculations show that the proposed method can improve the uniformity in single-material heating and multi-material heating cases by 56.8–94.3% and 44.4–76.6%, respectively, over that of fixed-frequency heating while achieving improved heating efficiency on the basis of frequency conversion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
High Temperature Materials and Processes
High Temperature Materials and Processes 工程技术-材料科学:综合
CiteScore
2.50
自引率
0.00%
发文量
42
审稿时长
3.9 months
期刊介绍: High Temperature Materials and Processes offers an international publication forum for new ideas, insights and results related to high-temperature materials and processes in science and technology. The journal publishes original research papers and short communications addressing topics at the forefront of high-temperature materials research including processing of various materials at high temperatures. Occasionally, reviews of a specific topic are included. The journal also publishes special issues featuring ongoing research programs as well as symposia of high-temperature materials and processes, and other related research activities. Emphasis is placed on the multi-disciplinary nature of high-temperature materials and processes for various materials in a variety of states. Such a nature of the journal will help readers who wish to become acquainted with related subjects by obtaining information of various aspects of high-temperature materials research. The increasing spread of information on these subjects will also help to shed light on relevant topics of high-temperature materials and processes outside of readers’ own core specialties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信