Wen-tao Li , Jia-peng Zhang , Ruo-chen Sun , Qingyun Duan
{"title":"天津和ECMWF高分辨率降水预报对2021年7月河南极端降雨事件的评价","authors":"Wen-tao Li , Jia-peng Zhang , Ruo-chen Sun , Qingyun Duan","doi":"10.1016/j.wse.2022.11.002","DOIUrl":null,"url":null,"abstract":"<div><p>The extreme rainfall event of July 17 to 22, 2021 in Henan Province, China, led to severe urban waterlogging and flood disasters. This study investigated the performance of high-resolution weather forecasts in predicting this extreme event and the feasibility of weather forecast-based hydrological forecasts. To achieve this goal, high-resolution precipitation forecasts from the Tianji weather system and the forecast system of the European Centre for Medium-Range Weather Forecasts (ECMWF) were evaluated with the spatial verification metrics of structure, amplitude, and location. The results showed that Tianji weather forecasts accurately predicted the amplitude of 12-h accumulated precipitation with a lead time of 12 h. The location and structure of the rainfall areas in Tianji forecasts were closer to the observations than ECMWF forecasts. Tianji hourly precipitation forecasts were also more accurate than ECMWF hourly forecasts, especially at lead times shorter than 8 h. The precipitation forecasts were used as the inputs to a hydrological model to evaluate their hydrological applications. The results showed that the runoff forecasts driven by Tianji weather forecasts could effectively predict the extreme flood event. The runoff forecasts driven by Tianji forecasts were more accurate than those driven by ECMWF forecasts in terms of amplitude and location. This study demonstrates that high-resolution weather forecasts and corresponding hydrological forecasts can provide valuable information in advance for disaster warnings and leave time for people to act on the event. The results encourage further hydrological applications of high-resolution weather forecasts, such as Tianji weather forecasts, in the future.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"16 2","pages":"Pages 122-131"},"PeriodicalIF":3.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluation of Tianji and ECMWF high-resolution precipitation forecasts for extreme rainfall event in Henan in July 2021\",\"authors\":\"Wen-tao Li , Jia-peng Zhang , Ruo-chen Sun , Qingyun Duan\",\"doi\":\"10.1016/j.wse.2022.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The extreme rainfall event of July 17 to 22, 2021 in Henan Province, China, led to severe urban waterlogging and flood disasters. This study investigated the performance of high-resolution weather forecasts in predicting this extreme event and the feasibility of weather forecast-based hydrological forecasts. To achieve this goal, high-resolution precipitation forecasts from the Tianji weather system and the forecast system of the European Centre for Medium-Range Weather Forecasts (ECMWF) were evaluated with the spatial verification metrics of structure, amplitude, and location. The results showed that Tianji weather forecasts accurately predicted the amplitude of 12-h accumulated precipitation with a lead time of 12 h. The location and structure of the rainfall areas in Tianji forecasts were closer to the observations than ECMWF forecasts. Tianji hourly precipitation forecasts were also more accurate than ECMWF hourly forecasts, especially at lead times shorter than 8 h. The precipitation forecasts were used as the inputs to a hydrological model to evaluate their hydrological applications. The results showed that the runoff forecasts driven by Tianji weather forecasts could effectively predict the extreme flood event. The runoff forecasts driven by Tianji forecasts were more accurate than those driven by ECMWF forecasts in terms of amplitude and location. This study demonstrates that high-resolution weather forecasts and corresponding hydrological forecasts can provide valuable information in advance for disaster warnings and leave time for people to act on the event. The results encourage further hydrological applications of high-resolution weather forecasts, such as Tianji weather forecasts, in the future.</p></div>\",\"PeriodicalId\":23628,\"journal\":{\"name\":\"Water science and engineering\",\"volume\":\"16 2\",\"pages\":\"Pages 122-131\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water science and engineering\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674237022000904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water science and engineering","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674237022000904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Evaluation of Tianji and ECMWF high-resolution precipitation forecasts for extreme rainfall event in Henan in July 2021
The extreme rainfall event of July 17 to 22, 2021 in Henan Province, China, led to severe urban waterlogging and flood disasters. This study investigated the performance of high-resolution weather forecasts in predicting this extreme event and the feasibility of weather forecast-based hydrological forecasts. To achieve this goal, high-resolution precipitation forecasts from the Tianji weather system and the forecast system of the European Centre for Medium-Range Weather Forecasts (ECMWF) were evaluated with the spatial verification metrics of structure, amplitude, and location. The results showed that Tianji weather forecasts accurately predicted the amplitude of 12-h accumulated precipitation with a lead time of 12 h. The location and structure of the rainfall areas in Tianji forecasts were closer to the observations than ECMWF forecasts. Tianji hourly precipitation forecasts were also more accurate than ECMWF hourly forecasts, especially at lead times shorter than 8 h. The precipitation forecasts were used as the inputs to a hydrological model to evaluate their hydrological applications. The results showed that the runoff forecasts driven by Tianji weather forecasts could effectively predict the extreme flood event. The runoff forecasts driven by Tianji forecasts were more accurate than those driven by ECMWF forecasts in terms of amplitude and location. This study demonstrates that high-resolution weather forecasts and corresponding hydrological forecasts can provide valuable information in advance for disaster warnings and leave time for people to act on the event. The results encourage further hydrological applications of high-resolution weather forecasts, such as Tianji weather forecasts, in the future.
期刊介绍:
Water Science and Engineering journal is an international, peer-reviewed research publication covering new concepts, theories, methods, and techniques related to water issues. The journal aims to publish research that helps advance the theoretical and practical understanding of water resources, aquatic environment, aquatic ecology, and water engineering, with emphases placed on the innovation and applicability of science and technology in large-scale hydropower project construction, large river and lake regulation, inter-basin water transfer, hydroelectric energy development, ecological restoration, the development of new materials, and sustainable utilization of water resources.