{"title":"鉴定倒卵树树复群的进化谱系:种群遗传学和形态计量学分析支持一个新的亚种——倒卵树树亚种。凤尾花,产自澳大利亚昆士兰北部","authors":"Y. Baba, M. Rossetto, D. Crayn","doi":"10.1071/SB18054","DOIUrl":null,"url":null,"abstract":"Abstract. With the aim to solve long-standing problems of taxonomic delimitation within the E. obovatus species complex (E. obovatus G.Don, E. arnhemicus F.Muell., E. sp. Mt Bellenden Ker (L.J.Brass 18336) Qld Herbarium and E. coorangooloo J.F.Bailey & C.T.White), diversity and relatedness were assessed using a combined population genetics and morphometric approach among 181 and 102 individuals respectively. Simple sequence-repeat (SSR) markers were analysed with clustering methods, analysis of molecular variance (AMOVA) and STRUCTURE. The morphometric data were analysed using cluster and classification and regression tree (CART) methods. The morphometric and genetic analyses together resolve discrete groups corresponding to E. arnhemicus, E. coorangooloo, E. obovatus and E. sp. Mt Bellenden Ker. Elaeocarpus arnhemicus is clearly distinct from all other entities on most of the morphometric and genetic analyses. By contrast, E. sp. Mt Bellenden Ker and E. obovatus were not clearly separated from each other in many morphometric analyses, but can be distinguished clearly by the strongly curved pedicels in early bud and hairy ovary, and, to a lesser extent, by the frequent occurrence of two racemes per axil and cuneate leaf bases, and on the results of the genetic analyses. Elaeocarpus coorangooloo exhibits considerable genetic admixture with the other entities, but it is morphologically distinct. SSR profiles suggested that E. arnhemicus and E. obovatus may be tetraploid, whereas the other entities are diploid. This study has clarified the taxonomic limits of the currently recognised species E. arnhemicus, E. obovatus and E. coorangooloo and supports recognition of E. sp. Mt Bellenden Ker at subspecies rank, described herein as E. obovatus subsp. umbratilis Y.Baba & Crayn. A key to all taxa and revised accounts of E. arnhemicus, E. obovatus subsp. obovatus and E. coorangooloo are provided.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1071/SB18054","citationCount":"0","resultStr":"{\"title\":\"Identifying evolutionary lineages in the Elaeocarpus obovatus complex: population genetics and morphometric analyses support a new subspecies, Elaeocarpus obovatus subsp. umbratilis, from northern Queensland, Australia\",\"authors\":\"Y. Baba, M. Rossetto, D. Crayn\",\"doi\":\"10.1071/SB18054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. With the aim to solve long-standing problems of taxonomic delimitation within the E. obovatus species complex (E. obovatus G.Don, E. arnhemicus F.Muell., E. sp. Mt Bellenden Ker (L.J.Brass 18336) Qld Herbarium and E. coorangooloo J.F.Bailey & C.T.White), diversity and relatedness were assessed using a combined population genetics and morphometric approach among 181 and 102 individuals respectively. Simple sequence-repeat (SSR) markers were analysed with clustering methods, analysis of molecular variance (AMOVA) and STRUCTURE. The morphometric data were analysed using cluster and classification and regression tree (CART) methods. The morphometric and genetic analyses together resolve discrete groups corresponding to E. arnhemicus, E. coorangooloo, E. obovatus and E. sp. Mt Bellenden Ker. Elaeocarpus arnhemicus is clearly distinct from all other entities on most of the morphometric and genetic analyses. By contrast, E. sp. Mt Bellenden Ker and E. obovatus were not clearly separated from each other in many morphometric analyses, but can be distinguished clearly by the strongly curved pedicels in early bud and hairy ovary, and, to a lesser extent, by the frequent occurrence of two racemes per axil and cuneate leaf bases, and on the results of the genetic analyses. Elaeocarpus coorangooloo exhibits considerable genetic admixture with the other entities, but it is morphologically distinct. SSR profiles suggested that E. arnhemicus and E. obovatus may be tetraploid, whereas the other entities are diploid. This study has clarified the taxonomic limits of the currently recognised species E. arnhemicus, E. obovatus and E. coorangooloo and supports recognition of E. sp. Mt Bellenden Ker at subspecies rank, described herein as E. obovatus subsp. umbratilis Y.Baba & Crayn. A key to all taxa and revised accounts of E. arnhemicus, E. obovatus subsp. obovatus and E. coorangooloo are provided.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1071/SB18054\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1071/SB18054\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/SB18054","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Identifying evolutionary lineages in the Elaeocarpus obovatus complex: population genetics and morphometric analyses support a new subspecies, Elaeocarpus obovatus subsp. umbratilis, from northern Queensland, Australia
Abstract. With the aim to solve long-standing problems of taxonomic delimitation within the E. obovatus species complex (E. obovatus G.Don, E. arnhemicus F.Muell., E. sp. Mt Bellenden Ker (L.J.Brass 18336) Qld Herbarium and E. coorangooloo J.F.Bailey & C.T.White), diversity and relatedness were assessed using a combined population genetics and morphometric approach among 181 and 102 individuals respectively. Simple sequence-repeat (SSR) markers were analysed with clustering methods, analysis of molecular variance (AMOVA) and STRUCTURE. The morphometric data were analysed using cluster and classification and regression tree (CART) methods. The morphometric and genetic analyses together resolve discrete groups corresponding to E. arnhemicus, E. coorangooloo, E. obovatus and E. sp. Mt Bellenden Ker. Elaeocarpus arnhemicus is clearly distinct from all other entities on most of the morphometric and genetic analyses. By contrast, E. sp. Mt Bellenden Ker and E. obovatus were not clearly separated from each other in many morphometric analyses, but can be distinguished clearly by the strongly curved pedicels in early bud and hairy ovary, and, to a lesser extent, by the frequent occurrence of two racemes per axil and cuneate leaf bases, and on the results of the genetic analyses. Elaeocarpus coorangooloo exhibits considerable genetic admixture with the other entities, but it is morphologically distinct. SSR profiles suggested that E. arnhemicus and E. obovatus may be tetraploid, whereas the other entities are diploid. This study has clarified the taxonomic limits of the currently recognised species E. arnhemicus, E. obovatus and E. coorangooloo and supports recognition of E. sp. Mt Bellenden Ker at subspecies rank, described herein as E. obovatus subsp. umbratilis Y.Baba & Crayn. A key to all taxa and revised accounts of E. arnhemicus, E. obovatus subsp. obovatus and E. coorangooloo are provided.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.