{"title":"耕作和植物密度作为适应气候变化的措施","authors":"V. Malyarchuk, E. Fedorchuk","doi":"10.31473/2305-5987-2021-1-29(43)-13","DOIUrl":null,"url":null,"abstract":"Abstract. The article presents the results of research of the South-Ukrainian branch of UkrNDIPVT L. Pogoriloho on the adaptation of winter wheat cultivation technologies in grain and steam crop rotations to increase the aridity of the climate by optimizing the density of standing plants, methods and depth of basic tillage. The purpose of research is to adjust the seeding rate by changing the width of the rows when growing winter wheat, as an agro-technological measure of accumulation and rational use of soil moisture (agro-technological direction of adaptation to climate change). Determining the influence of sowing rate, with different methods of tillage, on the productivity and economic efficiency of growing winter wheat in crop rotations on non-irrigated lands of southern Ukraine. Methods and Materials: field, quantitative-weight, visual and laboratory methods. Mathematical and statistical methods were used to systematize and generalize the obtained results. Research results. It has been experimentally established that the replacement of plowing to a depth of 28-30 cm for winter wheat crops with shallow (10-12 cm) disc tillage and reduction of the sowing rate of winter wheat variety «Kherson-99» to 2.25 million pieces similar seeds per hectare, by increasing the width between rows, provided an increase in grain yield by 16.7 % in 2020 and 7.7% in 2021. The profit per 1 hectare with this technology amounted to UAH 13280,5 in 2020 and UAH 28484,9 in 2021, which is 18.4 % and 9.3 % more than similar indicators in deep plowing and 31.3 % and 8.9 % more than the classic sowing rate (4.5 million units/ha). Conclusions. The efficiency of replacing deep plowing with shallow disc loosening and reducing the sowing rate to 2.25 million units/ha in the cultivation of winter wheat Kherson-99 in grain and steam crop rotation of the South of Ukraine was confirmed. A regularity in the size of the effect of reducing the seeding rate under drier conditions of the growing season was revealed.","PeriodicalId":34711,"journal":{"name":"Tekhnikotekhnologichni aspekti rozvitku ta viprobuvannia novoyi tekhniki i tekhnologii dlia sil''s''kogo gospodarstva Ukrayini","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tillage and Plant Density as Measures of Adaptation to Climate Change\",\"authors\":\"V. Malyarchuk, E. Fedorchuk\",\"doi\":\"10.31473/2305-5987-2021-1-29(43)-13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The article presents the results of research of the South-Ukrainian branch of UkrNDIPVT L. Pogoriloho on the adaptation of winter wheat cultivation technologies in grain and steam crop rotations to increase the aridity of the climate by optimizing the density of standing plants, methods and depth of basic tillage. The purpose of research is to adjust the seeding rate by changing the width of the rows when growing winter wheat, as an agro-technological measure of accumulation and rational use of soil moisture (agro-technological direction of adaptation to climate change). Determining the influence of sowing rate, with different methods of tillage, on the productivity and economic efficiency of growing winter wheat in crop rotations on non-irrigated lands of southern Ukraine. Methods and Materials: field, quantitative-weight, visual and laboratory methods. Mathematical and statistical methods were used to systematize and generalize the obtained results. Research results. It has been experimentally established that the replacement of plowing to a depth of 28-30 cm for winter wheat crops with shallow (10-12 cm) disc tillage and reduction of the sowing rate of winter wheat variety «Kherson-99» to 2.25 million pieces similar seeds per hectare, by increasing the width between rows, provided an increase in grain yield by 16.7 % in 2020 and 7.7% in 2021. The profit per 1 hectare with this technology amounted to UAH 13280,5 in 2020 and UAH 28484,9 in 2021, which is 18.4 % and 9.3 % more than similar indicators in deep plowing and 31.3 % and 8.9 % more than the classic sowing rate (4.5 million units/ha). Conclusions. The efficiency of replacing deep plowing with shallow disc loosening and reducing the sowing rate to 2.25 million units/ha in the cultivation of winter wheat Kherson-99 in grain and steam crop rotation of the South of Ukraine was confirmed. A regularity in the size of the effect of reducing the seeding rate under drier conditions of the growing season was revealed.\",\"PeriodicalId\":34711,\"journal\":{\"name\":\"Tekhnikotekhnologichni aspekti rozvitku ta viprobuvannia novoyi tekhniki i tekhnologii dlia sil''s''kogo gospodarstva Ukrayini\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tekhnikotekhnologichni aspekti rozvitku ta viprobuvannia novoyi tekhniki i tekhnologii dlia sil''s''kogo gospodarstva Ukrayini\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31473/2305-5987-2021-1-29(43)-13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tekhnikotekhnologichni aspekti rozvitku ta viprobuvannia novoyi tekhniki i tekhnologii dlia sil''s''kogo gospodarstva Ukrayini","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31473/2305-5987-2021-1-29(43)-13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tillage and Plant Density as Measures of Adaptation to Climate Change
Abstract. The article presents the results of research of the South-Ukrainian branch of UkrNDIPVT L. Pogoriloho on the adaptation of winter wheat cultivation technologies in grain and steam crop rotations to increase the aridity of the climate by optimizing the density of standing plants, methods and depth of basic tillage. The purpose of research is to adjust the seeding rate by changing the width of the rows when growing winter wheat, as an agro-technological measure of accumulation and rational use of soil moisture (agro-technological direction of adaptation to climate change). Determining the influence of sowing rate, with different methods of tillage, on the productivity and economic efficiency of growing winter wheat in crop rotations on non-irrigated lands of southern Ukraine. Methods and Materials: field, quantitative-weight, visual and laboratory methods. Mathematical and statistical methods were used to systematize and generalize the obtained results. Research results. It has been experimentally established that the replacement of plowing to a depth of 28-30 cm for winter wheat crops with shallow (10-12 cm) disc tillage and reduction of the sowing rate of winter wheat variety «Kherson-99» to 2.25 million pieces similar seeds per hectare, by increasing the width between rows, provided an increase in grain yield by 16.7 % in 2020 and 7.7% in 2021. The profit per 1 hectare with this technology amounted to UAH 13280,5 in 2020 and UAH 28484,9 in 2021, which is 18.4 % and 9.3 % more than similar indicators in deep plowing and 31.3 % and 8.9 % more than the classic sowing rate (4.5 million units/ha). Conclusions. The efficiency of replacing deep plowing with shallow disc loosening and reducing the sowing rate to 2.25 million units/ha in the cultivation of winter wheat Kherson-99 in grain and steam crop rotation of the South of Ukraine was confirmed. A regularity in the size of the effect of reducing the seeding rate under drier conditions of the growing season was revealed.