Natalie Worapattrakul, Andreas Tatzel, Volker Viereck, Hartmut Hillmer
{"title":"平面独立金属层制造:实现用于光导向应用的微镜阵列的子结构","authors":"Natalie Worapattrakul, Andreas Tatzel, Volker Viereck, Hartmut Hillmer","doi":"10.1186/s40486-020-00124-x","DOIUrl":null,"url":null,"abstract":"<p>We present a method to fabricate planar metal layers to be used as micromachined mirrors. Released mirrors of pure metal involve severe stress and reveal specific challenges to obtain planar mirror structures. Introducing sub-structures generating corrugated patterns, the metal mirror layers can be mechanically stabilized and undesired mirror bending can be reduced. For our investigations we used different arrangements of line structures on our metal mirrors, such as a group of straight or curved lines oriented differently. Comparing all the implemented different designs, planar micromirrors were achieved via sub-structures with a combination of straight lines arranged orthogonally to a single line. These planar micromirrors allow steering of the incident light by reflection and adjustment of the window transmittance. The presented low-cost method is suitable for large area fabrication of micromirror arrays, but also can be customized for other applications, where planar free-standing metal layers are required.</p>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"8 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2020-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Planar free-standing metal layer fabrication: implementing sub-structures in micromirror arrays for light steering applications\",\"authors\":\"Natalie Worapattrakul, Andreas Tatzel, Volker Viereck, Hartmut Hillmer\",\"doi\":\"10.1186/s40486-020-00124-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a method to fabricate planar metal layers to be used as micromachined mirrors. Released mirrors of pure metal involve severe stress and reveal specific challenges to obtain planar mirror structures. Introducing sub-structures generating corrugated patterns, the metal mirror layers can be mechanically stabilized and undesired mirror bending can be reduced. For our investigations we used different arrangements of line structures on our metal mirrors, such as a group of straight or curved lines oriented differently. Comparing all the implemented different designs, planar micromirrors were achieved via sub-structures with a combination of straight lines arranged orthogonally to a single line. These planar micromirrors allow steering of the incident light by reflection and adjustment of the window transmittance. The presented low-cost method is suitable for large area fabrication of micromirror arrays, but also can be customized for other applications, where planar free-standing metal layers are required.</p>\",\"PeriodicalId\":704,\"journal\":{\"name\":\"Micro and Nano Systems Letters\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2020-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nano Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40486-020-00124-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40486-020-00124-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Planar free-standing metal layer fabrication: implementing sub-structures in micromirror arrays for light steering applications
We present a method to fabricate planar metal layers to be used as micromachined mirrors. Released mirrors of pure metal involve severe stress and reveal specific challenges to obtain planar mirror structures. Introducing sub-structures generating corrugated patterns, the metal mirror layers can be mechanically stabilized and undesired mirror bending can be reduced. For our investigations we used different arrangements of line structures on our metal mirrors, such as a group of straight or curved lines oriented differently. Comparing all the implemented different designs, planar micromirrors were achieved via sub-structures with a combination of straight lines arranged orthogonally to a single line. These planar micromirrors allow steering of the incident light by reflection and adjustment of the window transmittance. The presented low-cost method is suitable for large area fabrication of micromirror arrays, but also can be customized for other applications, where planar free-standing metal layers are required.