由直线和k平面组成的关节,以及Kakeya型的离散估计

IF 1 3区 数学 Q1 MATHEMATICS
A. Carbery, Marina Iliopoulou
{"title":"由直线和k平面组成的关节,以及Kakeya型的离散估计","authors":"A. Carbery, Marina Iliopoulou","doi":"10.19086/DA.18361","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal{L}$ be a family of lines and let $\\mathcal{P}$ be a family of $k$-planes in $\\mathbb{F}^n$ where $\\mathbb{F}$ is a field. In our first result we show that the number of joints formed by a $k$-plane in $\\mathcal{P}$ together with $(n-k)$ lines in $\\mathcal{L}$ is $O_n(|\\mathcal{L}||\\mathcal{P}|^{1/(n-k)}$). This is the first sharp result for joints involving higher-dimensional affine subspaces, and it holds in the setting of arbitrary fields $\\mathbb{F}$. In contrast, for our second result, we work in the three-dimensional Euclidean space $\\mathbb{R}^3$, and we establish the Kakeya-type estimate \\begin{equation*}\\sum_{x \\in J} \\left(\\sum_{\\ell \\in \\mathcal{L}} \\chi_\\ell(x)\\right)^{3/2} \\lesssim |\\mathcal{L}|^{3/2}\\end{equation*} where $J$ is the set of joints formed by $\\mathcal{L}$; such an estimate fails in the setting of arbitrary fields. This result strengthens the known estimates for joints, including those counting multiplicities. Additionally, our techniques yield significant structural information on quasi-extremisers for this inequality.","PeriodicalId":37312,"journal":{"name":"Discrete Analysis","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Joints formed by lines and a $k$-plane, and a discrete estimate of Kakeya type\",\"authors\":\"A. Carbery, Marina Iliopoulou\",\"doi\":\"10.19086/DA.18361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathcal{L}$ be a family of lines and let $\\\\mathcal{P}$ be a family of $k$-planes in $\\\\mathbb{F}^n$ where $\\\\mathbb{F}$ is a field. In our first result we show that the number of joints formed by a $k$-plane in $\\\\mathcal{P}$ together with $(n-k)$ lines in $\\\\mathcal{L}$ is $O_n(|\\\\mathcal{L}||\\\\mathcal{P}|^{1/(n-k)}$). This is the first sharp result for joints involving higher-dimensional affine subspaces, and it holds in the setting of arbitrary fields $\\\\mathbb{F}$. In contrast, for our second result, we work in the three-dimensional Euclidean space $\\\\mathbb{R}^3$, and we establish the Kakeya-type estimate \\\\begin{equation*}\\\\sum_{x \\\\in J} \\\\left(\\\\sum_{\\\\ell \\\\in \\\\mathcal{L}} \\\\chi_\\\\ell(x)\\\\right)^{3/2} \\\\lesssim |\\\\mathcal{L}|^{3/2}\\\\end{equation*} where $J$ is the set of joints formed by $\\\\mathcal{L}$; such an estimate fails in the setting of arbitrary fields. This result strengthens the known estimates for joints, including those counting multiplicities. Additionally, our techniques yield significant structural information on quasi-extremisers for this inequality.\",\"PeriodicalId\":37312,\"journal\":{\"name\":\"Discrete Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.19086/DA.18361\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.19086/DA.18361","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

设$\mathcal{L}$是一个线族,设$\math cal{P}$为$\mathbb{F}^n$中$k$平面的族,其中$\mathbb{F}$是字段。在我们的第一个结果中,我们证明了$\mathcal{P}$中的$k$平面与$\mathical{L}$的$(n-k)$线形成的关节数为$O_n(|\mathcal{L}|\mathcal{P}|^{1/(n-k)}$)。这是涉及高维仿射子空间的关节的第一个尖锐结果,并且它在任意域$\mathbb{F}$的设置中成立。相反,对于我们的第二个结果,我们在三维欧几里得空间$\mathbb{R}^3$中工作,并且我们建立了Kakeya型估计\ begin{equipment*}\sum_{x\ In J}\left(\sum_{\ell\In\mathcal{L}}\chi_\ell(x)\right)^{3/2}\lesssim|\mathcal{L}|^{3/3}\end{equation*},其中$J$是由$\mathcal}$形成的关节集;这样的估计在任意字段的设置中失败。这一结果加强了已知的节理估计,包括那些计算乘数的估计。此外,我们的技术产生了关于这个不等式的拟极值的重要结构信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joints formed by lines and a $k$-plane, and a discrete estimate of Kakeya type
Let $\mathcal{L}$ be a family of lines and let $\mathcal{P}$ be a family of $k$-planes in $\mathbb{F}^n$ where $\mathbb{F}$ is a field. In our first result we show that the number of joints formed by a $k$-plane in $\mathcal{P}$ together with $(n-k)$ lines in $\mathcal{L}$ is $O_n(|\mathcal{L}||\mathcal{P}|^{1/(n-k)}$). This is the first sharp result for joints involving higher-dimensional affine subspaces, and it holds in the setting of arbitrary fields $\mathbb{F}$. In contrast, for our second result, we work in the three-dimensional Euclidean space $\mathbb{R}^3$, and we establish the Kakeya-type estimate \begin{equation*}\sum_{x \in J} \left(\sum_{\ell \in \mathcal{L}} \chi_\ell(x)\right)^{3/2} \lesssim |\mathcal{L}|^{3/2}\end{equation*} where $J$ is the set of joints formed by $\mathcal{L}$; such an estimate fails in the setting of arbitrary fields. This result strengthens the known estimates for joints, including those counting multiplicities. Additionally, our techniques yield significant structural information on quasi-extremisers for this inequality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Analysis
Discrete Analysis Mathematics-Algebra and Number Theory
CiteScore
1.60
自引率
0.00%
发文量
1
审稿时长
17 weeks
期刊介绍: Discrete Analysis is a mathematical journal that aims to publish articles that are analytical in flavour but that also have an impact on the study of discrete structures. The areas covered include (all or parts of) harmonic analysis, ergodic theory, topological dynamics, growth in groups, analytic number theory, additive combinatorics, combinatorial number theory, extremal and probabilistic combinatorics, combinatorial geometry, convexity, metric geometry, and theoretical computer science. As a rough guideline, we are looking for papers that are likely to be of genuine interest to the editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信