二维线性共环的边际不稳定率注记

Pub Date : 2023-01-12 DOI:10.1080/14689367.2023.2210518
I. Morris, Jonah Varney
{"title":"二维线性共环的边际不稳定率注记","authors":"I. Morris, Jonah Varney","doi":"10.1080/14689367.2023.2210518","DOIUrl":null,"url":null,"abstract":"A theorem of Guglielmi and Zennaro implies that if the uniform norm growth of a locally constant -cocycle on the full shift is not exponential, then it must be either bounded or linear, with no other possibilities occurring. We give an alternative proof of this result and demonstrate that its conclusions do not hold for Lipschitz continuous cocycles over the full shift on two symbols.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A note on the marginal instability rates of two-dimensional linear cocycles\",\"authors\":\"I. Morris, Jonah Varney\",\"doi\":\"10.1080/14689367.2023.2210518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A theorem of Guglielmi and Zennaro implies that if the uniform norm growth of a locally constant -cocycle on the full shift is not exponential, then it must be either bounded or linear, with no other possibilities occurring. We give an alternative proof of this result and demonstrate that its conclusions do not hold for Lipschitz continuous cocycles over the full shift on two symbols.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/14689367.2023.2210518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2023.2210518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Guglielmi和Zennaro的一个定理表明,如果一个局部常数环在全位移上的一致范数增长不是指数增长,那么它要么是有界的,要么是线性的,不存在其他可能性。我们给出了这一结果的另一种证明,并证明了它的结论对于两个符号上的全位移上的Lipschitz连续环不成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A note on the marginal instability rates of two-dimensional linear cocycles
A theorem of Guglielmi and Zennaro implies that if the uniform norm growth of a locally constant -cocycle on the full shift is not exponential, then it must be either bounded or linear, with no other possibilities occurring. We give an alternative proof of this result and demonstrate that its conclusions do not hold for Lipschitz continuous cocycles over the full shift on two symbols.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信