Yanan Du, Kang Su, Xinxin Yuan, Tuo Li, Kai Liu, Hongtao Man, Xiaofeng Zou
{"title":"基于Mach-Zehnder干涉仪阵列的光神经网络实现","authors":"Yanan Du, Kang Su, Xinxin Yuan, Tuo Li, Kai Liu, Hongtao Man, Xiaofeng Zou","doi":"10.1049/ote2.12086","DOIUrl":null,"url":null,"abstract":"<p>Compared with electrons, photons have the potential to realise ultra-high speed operations because of its unique high speed and high parallelism. In recent years, there have been many researches on neural networks using optical hardware. The Mach–Zehnder interferometer (MZI) and micro-ring resonator (MRR) are commonly used as optical devices to realise linear operation units in optical neural networks (ONN). MZI has the advantages of simple fabrication, high sensitivity, and easy integration, which has attracted the attention of researchers. We summarise the implementation methods of ONN matrix multiplication based on MZI, the implementation methods of non-linear activation, and the on-chip training methods. We first summarise the researches on matrix multiplication of ONN based on MZI. Three kinds of MZI grid decomposition methods, Fast Fourier Transform (FFT) grid structures, and the corresponding derivation processes are introduced, respectively. Then, several experimental implementations of ONN based on MZI are summarised, and the characteristics of optical processors fabricated in these references are analysed. Finally, the realisation methods of non-linear activation and on-chip training of silicon ONN are introduced, respectively.</p>","PeriodicalId":13408,"journal":{"name":"Iet Optoelectronics","volume":"17 1","pages":"1-11"},"PeriodicalIF":2.3000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ote2.12086","citationCount":"3","resultStr":"{\"title\":\"Implementation of optical neural network based on Mach–Zehnder interferometer array\",\"authors\":\"Yanan Du, Kang Su, Xinxin Yuan, Tuo Li, Kai Liu, Hongtao Man, Xiaofeng Zou\",\"doi\":\"10.1049/ote2.12086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Compared with electrons, photons have the potential to realise ultra-high speed operations because of its unique high speed and high parallelism. In recent years, there have been many researches on neural networks using optical hardware. The Mach–Zehnder interferometer (MZI) and micro-ring resonator (MRR) are commonly used as optical devices to realise linear operation units in optical neural networks (ONN). MZI has the advantages of simple fabrication, high sensitivity, and easy integration, which has attracted the attention of researchers. We summarise the implementation methods of ONN matrix multiplication based on MZI, the implementation methods of non-linear activation, and the on-chip training methods. We first summarise the researches on matrix multiplication of ONN based on MZI. Three kinds of MZI grid decomposition methods, Fast Fourier Transform (FFT) grid structures, and the corresponding derivation processes are introduced, respectively. Then, several experimental implementations of ONN based on MZI are summarised, and the characteristics of optical processors fabricated in these references are analysed. Finally, the realisation methods of non-linear activation and on-chip training of silicon ONN are introduced, respectively.</p>\",\"PeriodicalId\":13408,\"journal\":{\"name\":\"Iet Optoelectronics\",\"volume\":\"17 1\",\"pages\":\"1-11\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ote2.12086\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Optoelectronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/ote2.12086\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Optoelectronics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ote2.12086","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Implementation of optical neural network based on Mach–Zehnder interferometer array
Compared with electrons, photons have the potential to realise ultra-high speed operations because of its unique high speed and high parallelism. In recent years, there have been many researches on neural networks using optical hardware. The Mach–Zehnder interferometer (MZI) and micro-ring resonator (MRR) are commonly used as optical devices to realise linear operation units in optical neural networks (ONN). MZI has the advantages of simple fabrication, high sensitivity, and easy integration, which has attracted the attention of researchers. We summarise the implementation methods of ONN matrix multiplication based on MZI, the implementation methods of non-linear activation, and the on-chip training methods. We first summarise the researches on matrix multiplication of ONN based on MZI. Three kinds of MZI grid decomposition methods, Fast Fourier Transform (FFT) grid structures, and the corresponding derivation processes are introduced, respectively. Then, several experimental implementations of ONN based on MZI are summarised, and the characteristics of optical processors fabricated in these references are analysed. Finally, the realisation methods of non-linear activation and on-chip training of silicon ONN are introduced, respectively.
期刊介绍:
IET Optoelectronics publishes state of the art research papers in the field of optoelectronics and photonics. The topics that are covered by the journal include optical and optoelectronic materials, nanophotonics, metamaterials and photonic crystals, light sources (e.g. LEDs, lasers and devices for lighting), optical modulation and multiplexing, optical fibres, cables and connectors, optical amplifiers, photodetectors and optical receivers, photonic integrated circuits, photonic systems, optical signal processing and holography and displays.
Most of the papers published describe original research from universities and industrial and government laboratories. However correspondence suggesting review papers and tutorials is welcomed, as are suggestions for special issues.
IET Optoelectronics covers but is not limited to the following topics:
Optical and optoelectronic materials
Light sources, including LEDs, lasers and devices for lighting
Optical modulation and multiplexing
Optical fibres, cables and connectors
Optical amplifiers
Photodetectors and optical receivers
Photonic integrated circuits
Nanophotonics and photonic crystals
Optical signal processing
Holography
Displays