接触问题具有粘着性和磨损性,电粘弹性具有损伤性

Abdelaziz Azeb Ahmed, F. Yazid, F.S. Djeradi
{"title":"接触问题具有粘着性和磨损性,电粘弹性具有损伤性","authors":"Abdelaziz Azeb Ahmed, F. Yazid, F.S. Djeradi","doi":"10.32523/2306-6172-2023-11-1-29-48","DOIUrl":null,"url":null,"abstract":"We consider a mathematical model which describes the dynamic process of con- tact between a piezoelectric body and two obstacles. The behavior of the material is modeled with a nonlinear electro-viscoelastic constitutive with law long memory and damage. The mechanical damage of the material, caused by excessive stess or strains, is described by a damage function whose evolution is modeled by an inclusion of parabolic type. The contact is modeled with adhesion and wear. The adhesion field, whose evolution is described by a first order differential equation. The evolution of the wear function is described with Ar- chard’s law. For the variational formulation of the contact problem, we present and prove the existence of a unique weak solution to the problem. The proof is based on arguments of time dependent variational inequalities, parabolic inequalities, differential equations and fixed point arguments.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CONTACT PROBLEM WITH ADHESION AND WEAR IN ELECTRO-VISCOELASTICITY WITH DAMAGE\",\"authors\":\"Abdelaziz Azeb Ahmed, F. Yazid, F.S. Djeradi\",\"doi\":\"10.32523/2306-6172-2023-11-1-29-48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a mathematical model which describes the dynamic process of con- tact between a piezoelectric body and two obstacles. The behavior of the material is modeled with a nonlinear electro-viscoelastic constitutive with law long memory and damage. The mechanical damage of the material, caused by excessive stess or strains, is described by a damage function whose evolution is modeled by an inclusion of parabolic type. The contact is modeled with adhesion and wear. The adhesion field, whose evolution is described by a first order differential equation. The evolution of the wear function is described with Ar- chard’s law. For the variational formulation of the contact problem, we present and prove the existence of a unique weak solution to the problem. The proof is based on arguments of time dependent variational inequalities, parabolic inequalities, differential equations and fixed point arguments.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32523/2306-6172-2023-11-1-29-48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32523/2306-6172-2023-11-1-29-48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了一个描述压电体与两个障碍物接触的动态过程的数学模型。材料的行为采用具有长记忆和损伤规律的非线性电粘弹性本构模型。由过大的应力或应变引起的材料的机械损伤由损伤函数描述,损伤函数的演化由抛物型夹杂物建模。接触是用粘附和磨损来建模的。粘附场,其演化由一阶微分方程描述。用Ar-chard定律描述了磨损函数的演化过程。对于接触问题的变分形式,我们给出并证明了该问题的一个唯一弱解的存在性。该证明基于时间相关变分不等式、抛物型不等式、微分方程和不动点论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
CONTACT PROBLEM WITH ADHESION AND WEAR IN ELECTRO-VISCOELASTICITY WITH DAMAGE
We consider a mathematical model which describes the dynamic process of con- tact between a piezoelectric body and two obstacles. The behavior of the material is modeled with a nonlinear electro-viscoelastic constitutive with law long memory and damage. The mechanical damage of the material, caused by excessive stess or strains, is described by a damage function whose evolution is modeled by an inclusion of parabolic type. The contact is modeled with adhesion and wear. The adhesion field, whose evolution is described by a first order differential equation. The evolution of the wear function is described with Ar- chard’s law. For the variational formulation of the contact problem, we present and prove the existence of a unique weak solution to the problem. The proof is based on arguments of time dependent variational inequalities, parabolic inequalities, differential equations and fixed point arguments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信