基于GPU并行计算的大规模焊接过程仿真

IF 2.2 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Hui Huang, Jian Chen, Zhili Feng, Hui-Ping Wang, W. Cai, B. Carlson
{"title":"基于GPU并行计算的大规模焊接过程仿真","authors":"Hui Huang, Jian Chen, Zhili Feng, Hui-Ping Wang, W. Cai, B. Carlson","doi":"10.29391/2022.101.032","DOIUrl":null,"url":null,"abstract":"The computational design of industrially relevant welded structures is extremely time consuming due to coupled physics and high nonlinearity. Previously, most welding distortion and residual stress simulations have been limited to small coupons and reduced order (from three-dimensional [3D] to two-dimensional [2D]), or inherent strain approximations were used for large structures. In this current study, an explicit finite element code based on a graphics processing unit was utilized to perform 3D transient thermomechanical simulation of structural components during welding. Laser brazing of aluminum alloy panels as representative of automotive manufacturing scenarios was simulated to predict out-of-plane distortion under different clamping conditions. The predicted deformation pattern and magnitude were validated by laser scanning data of physical assemblies. In addition, the code was used to investigate residual stresses developed during multipass arc welding of a nuclear industry pressurizer surge nozzle and subsequent welding repair where a 3D simulation was necessary. Taking the experimental data as reference, the 3D model predicted better residual stress distribution than a typical 2D asymmetrical model. Stress evolution in welding repair was also presented and discussed in this study. The efficient numerical model made it feasible to use integrated computational welding engineering to simulate welding processes for large-scale structures.","PeriodicalId":23681,"journal":{"name":"Welding Journal","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Large-Scale Welding Process Simulation by GPU Parallelized Computing\",\"authors\":\"Hui Huang, Jian Chen, Zhili Feng, Hui-Ping Wang, W. Cai, B. Carlson\",\"doi\":\"10.29391/2022.101.032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The computational design of industrially relevant welded structures is extremely time consuming due to coupled physics and high nonlinearity. Previously, most welding distortion and residual stress simulations have been limited to small coupons and reduced order (from three-dimensional [3D] to two-dimensional [2D]), or inherent strain approximations were used for large structures. In this current study, an explicit finite element code based on a graphics processing unit was utilized to perform 3D transient thermomechanical simulation of structural components during welding. Laser brazing of aluminum alloy panels as representative of automotive manufacturing scenarios was simulated to predict out-of-plane distortion under different clamping conditions. The predicted deformation pattern and magnitude were validated by laser scanning data of physical assemblies. In addition, the code was used to investigate residual stresses developed during multipass arc welding of a nuclear industry pressurizer surge nozzle and subsequent welding repair where a 3D simulation was necessary. Taking the experimental data as reference, the 3D model predicted better residual stress distribution than a typical 2D asymmetrical model. Stress evolution in welding repair was also presented and discussed in this study. The efficient numerical model made it feasible to use integrated computational welding engineering to simulate welding processes for large-scale structures.\",\"PeriodicalId\":23681,\"journal\":{\"name\":\"Welding Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Welding Journal\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.29391/2022.101.032\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.29391/2022.101.032","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 8

摘要

由于耦合物理和高度非线性,工业相关焊接结构的计算设计非常耗时。以前,大多数焊接变形和残余应力模拟仅限于小型试件和降阶(从三维[3D]到二维[2D]),或者对大型结构使用固有应变近似。在本研究中,使用基于图形处理单元的显式有限元代码对焊接过程中的结构部件进行三维瞬态热机械模拟。模拟了作为汽车制造场景代表的铝合金面板的激光钎焊,以预测不同夹紧条件下的平面外变形。通过物理组件的激光扫描数据验证了预测的变形模式和大小。此外,该代码还用于研究核工业稳压器稳压喷嘴的多道次电弧焊接过程中产生的残余应力,以及随后需要进行3D模拟的焊接修复。以实验数据为参考,三维模型比典型的二维非对称模型预测出更好的残余应力分布。本文还介绍并讨论了焊接修复过程中的应力演化。该高效的数值模型使采用集成计算焊接工程模拟大型结构焊接过程成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large-Scale Welding Process Simulation by GPU Parallelized Computing
The computational design of industrially relevant welded structures is extremely time consuming due to coupled physics and high nonlinearity. Previously, most welding distortion and residual stress simulations have been limited to small coupons and reduced order (from three-dimensional [3D] to two-dimensional [2D]), or inherent strain approximations were used for large structures. In this current study, an explicit finite element code based on a graphics processing unit was utilized to perform 3D transient thermomechanical simulation of structural components during welding. Laser brazing of aluminum alloy panels as representative of automotive manufacturing scenarios was simulated to predict out-of-plane distortion under different clamping conditions. The predicted deformation pattern and magnitude were validated by laser scanning data of physical assemblies. In addition, the code was used to investigate residual stresses developed during multipass arc welding of a nuclear industry pressurizer surge nozzle and subsequent welding repair where a 3D simulation was necessary. Taking the experimental data as reference, the 3D model predicted better residual stress distribution than a typical 2D asymmetrical model. Stress evolution in welding repair was also presented and discussed in this study. The efficient numerical model made it feasible to use integrated computational welding engineering to simulate welding processes for large-scale structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Welding Journal
Welding Journal 工程技术-冶金工程
CiteScore
3.00
自引率
0.00%
发文量
23
审稿时长
3 months
期刊介绍: The Welding Journal has been published continually since 1922 — an unmatched link to all issues and advancements concerning metal fabrication and construction. Each month the Welding Journal delivers news of the welding and metal fabricating industry. Stay informed on the latest products, trends, technology and events via in-depth articles, full-color photos and illustrations, and timely, cost-saving advice. Also featured are articles and supplements on related activities, such as testing and inspection, maintenance and repair, design, training, personal safety, and brazing and soldering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信