{"title":"关于像素类和非交换KDV层次的witten猜想的推广","authors":"A. Buryak, P. Rossi","doi":"10.1017/S1474748022000354","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we formulate and present ample evidence towards the conjecture that the partition function (i.e. the exponential of the generating series of intersection numbers with monomials in psi classes) of the Pixton class on the moduli space of stable curves is the topological tau function of the noncommutative Korteweg-de Vries hierarchy, which we introduced in a previous work. The specialisation of this conjecture to the top degree part of Pixton’s class states that the partition function of the double ramification cycle is the tau function of the dispersionless limit of this hierarchy. In fact, we prove that this conjecture follows from the double ramification/Dubrovin–Zhang equivalence conjecture. We also provide several independent computational checks in support of it.","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":"22 1","pages":"2987 - 3009"},"PeriodicalIF":1.1000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A GENERALISATION OF WITTEN’S CONJECTURE FOR THE PIXTON CLASS AND THE NONCOMMUTATIVE KDV HIERARCHY\",\"authors\":\"A. Buryak, P. Rossi\",\"doi\":\"10.1017/S1474748022000354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we formulate and present ample evidence towards the conjecture that the partition function (i.e. the exponential of the generating series of intersection numbers with monomials in psi classes) of the Pixton class on the moduli space of stable curves is the topological tau function of the noncommutative Korteweg-de Vries hierarchy, which we introduced in a previous work. The specialisation of this conjecture to the top degree part of Pixton’s class states that the partition function of the double ramification cycle is the tau function of the dispersionless limit of this hierarchy. In fact, we prove that this conjecture follows from the double ramification/Dubrovin–Zhang equivalence conjecture. We also provide several independent computational checks in support of it.\",\"PeriodicalId\":50002,\"journal\":{\"name\":\"Journal of the Institute of Mathematics of Jussieu\",\"volume\":\"22 1\",\"pages\":\"2987 - 3009\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Institute of Mathematics of Jussieu\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S1474748022000354\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Institute of Mathematics of Jussieu","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S1474748022000354","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A GENERALISATION OF WITTEN’S CONJECTURE FOR THE PIXTON CLASS AND THE NONCOMMUTATIVE KDV HIERARCHY
Abstract In this paper, we formulate and present ample evidence towards the conjecture that the partition function (i.e. the exponential of the generating series of intersection numbers with monomials in psi classes) of the Pixton class on the moduli space of stable curves is the topological tau function of the noncommutative Korteweg-de Vries hierarchy, which we introduced in a previous work. The specialisation of this conjecture to the top degree part of Pixton’s class states that the partition function of the double ramification cycle is the tau function of the dispersionless limit of this hierarchy. In fact, we prove that this conjecture follows from the double ramification/Dubrovin–Zhang equivalence conjecture. We also provide several independent computational checks in support of it.
期刊介绍:
The Journal of the Institute of Mathematics of Jussieu publishes original research papers in any branch of pure mathematics; papers in logic and applied mathematics will also be considered, particularly when they have direct connections with pure mathematics. Its policy is to feature a wide variety of research areas and it welcomes the submission of papers from all parts of the world. Selection for publication is on the basis of reports from specialist referees commissioned by the Editors.