Crystal Barrera, P. Ajay, Akhila Mallavarapu, Mark Hrdy, S. V. Sreenivasan
{"title":"金属辅助化学蚀刻多晶硅","authors":"Crystal Barrera, P. Ajay, Akhila Mallavarapu, Mark Hrdy, S. V. Sreenivasan","doi":"10.1115/1.4055401","DOIUrl":null,"url":null,"abstract":"\n Metal Assisted Chemical Etching (MacEtch) of silicon shows reliable vertical anisotropic wet etching only in single-crystal silicon, which limits its applications to a small number of devices. This work extends the capabilities of MacEtch to polysilicon which has potential to enable high-volume and cost-sensitive applications such as optical metasurfaces, anodes for high capacity and flexible batteries, electrostatic supercapacitors, sensors, nanofluidic deterministic lateral displacement devices, etc. This work presents a MacEtch of polysilicon that produces nanostructure arrays with sub-50nm resolution and anisotropic profile. The three demonstrated structures are pillars of 5:1 aspect ratio and 50nm spacing for comparison to single crystal silicon MacEtch literature, pillars of 30nm spacing and a diamond pillar array with sharp corners to establish resolution limits of polysilicon MacEtch.","PeriodicalId":45459,"journal":{"name":"Journal of Micro and Nano-Manufacturing","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metal Assisted Chemical Etch of Polycrystalline Silicon\",\"authors\":\"Crystal Barrera, P. Ajay, Akhila Mallavarapu, Mark Hrdy, S. V. Sreenivasan\",\"doi\":\"10.1115/1.4055401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Metal Assisted Chemical Etching (MacEtch) of silicon shows reliable vertical anisotropic wet etching only in single-crystal silicon, which limits its applications to a small number of devices. This work extends the capabilities of MacEtch to polysilicon which has potential to enable high-volume and cost-sensitive applications such as optical metasurfaces, anodes for high capacity and flexible batteries, electrostatic supercapacitors, sensors, nanofluidic deterministic lateral displacement devices, etc. This work presents a MacEtch of polysilicon that produces nanostructure arrays with sub-50nm resolution and anisotropic profile. The three demonstrated structures are pillars of 5:1 aspect ratio and 50nm spacing for comparison to single crystal silicon MacEtch literature, pillars of 30nm spacing and a diamond pillar array with sharp corners to establish resolution limits of polysilicon MacEtch.\",\"PeriodicalId\":45459,\"journal\":{\"name\":\"Journal of Micro and Nano-Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micro and Nano-Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4055401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro and Nano-Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4055401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Metal Assisted Chemical Etch of Polycrystalline Silicon
Metal Assisted Chemical Etching (MacEtch) of silicon shows reliable vertical anisotropic wet etching only in single-crystal silicon, which limits its applications to a small number of devices. This work extends the capabilities of MacEtch to polysilicon which has potential to enable high-volume and cost-sensitive applications such as optical metasurfaces, anodes for high capacity and flexible batteries, electrostatic supercapacitors, sensors, nanofluidic deterministic lateral displacement devices, etc. This work presents a MacEtch of polysilicon that produces nanostructure arrays with sub-50nm resolution and anisotropic profile. The three demonstrated structures are pillars of 5:1 aspect ratio and 50nm spacing for comparison to single crystal silicon MacEtch literature, pillars of 30nm spacing and a diamond pillar array with sharp corners to establish resolution limits of polysilicon MacEtch.
期刊介绍:
The Journal of Micro and Nano-Manufacturing provides a forum for the rapid dissemination of original theoretical and applied research in the areas of micro- and nano-manufacturing that are related to process innovation, accuracy, and precision, throughput enhancement, material utilization, compact equipment development, environmental and life-cycle analysis, and predictive modeling of manufacturing processes with feature sizes less than one hundred micrometers. Papers addressing special needs in emerging areas, such as biomedical devices, drug manufacturing, water and energy, are also encouraged. Areas of interest including, but not limited to: Unit micro- and nano-manufacturing processes; Hybrid manufacturing processes combining bottom-up and top-down processes; Hybrid manufacturing processes utilizing various energy sources (optical, mechanical, electrical, solar, etc.) to achieve multi-scale features and resolution; High-throughput micro- and nano-manufacturing processes; Equipment development; Predictive modeling and simulation of materials and/or systems enabling point-of-need or scaled-up micro- and nano-manufacturing; Metrology at the micro- and nano-scales over large areas; Sensors and sensor integration; Design algorithms for multi-scale manufacturing; Life cycle analysis; Logistics and material handling related to micro- and nano-manufacturing.