著名的17世纪Méré骑士悖论的教训

IF 1.2 Q2 EDUCATION & EDUCATIONAL RESEARCH
José Daniel López‐Barrientos, Eliud Silva, Enrique Lemus-Rodríguez
{"title":"著名的17世纪Méré骑士悖论的教训","authors":"José Daniel López‐Barrientos, Eliud Silva, Enrique Lemus-Rodríguez","doi":"10.1111/test.12321","DOIUrl":null,"url":null,"abstract":"We take advantage of a combinatorial misconception and the famous paradox of the Chevalier de Méré to present the multiplication rule for independent events; the principle of inclusion and exclusion in the presence of disjoint events; the median of a discrete‐type random variable, and a confidence interval for a large sample. Moreover, we pay tribute to our original bibliographic sources by providing two computational tools to facilitate the students' insights on these topics.","PeriodicalId":43739,"journal":{"name":"Teaching Statistics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Lessons from the famous 17th‐century paradox of the Chevalier de Méré\",\"authors\":\"José Daniel López‐Barrientos, Eliud Silva, Enrique Lemus-Rodríguez\",\"doi\":\"10.1111/test.12321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We take advantage of a combinatorial misconception and the famous paradox of the Chevalier de Méré to present the multiplication rule for independent events; the principle of inclusion and exclusion in the presence of disjoint events; the median of a discrete‐type random variable, and a confidence interval for a large sample. Moreover, we pay tribute to our original bibliographic sources by providing two computational tools to facilitate the students' insights on these topics.\",\"PeriodicalId\":43739,\"journal\":{\"name\":\"Teaching Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Teaching Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/test.12321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Teaching Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/test.12321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 1

摘要

我们利用组合误解和著名的Méré骑士悖论,提出了独立事件的乘法规则;在出现不连贯事件时的包容和排斥原则;离散型随机变量的中值,以及大样本的置信区间。此外,我们通过提供两个计算工具来促进学生对这些主题的见解,从而向我们的原始书目来源致敬。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lessons from the famous 17th‐century paradox of the Chevalier de Méré
We take advantage of a combinatorial misconception and the famous paradox of the Chevalier de Méré to present the multiplication rule for independent events; the principle of inclusion and exclusion in the presence of disjoint events; the median of a discrete‐type random variable, and a confidence interval for a large sample. Moreover, we pay tribute to our original bibliographic sources by providing two computational tools to facilitate the students' insights on these topics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Teaching Statistics
Teaching Statistics EDUCATION & EDUCATIONAL RESEARCH-
CiteScore
2.10
自引率
25.00%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信