自由回路-自由ω-类的神经和锥体

IF 0.8 Q2 MATHEMATICS
Andrea Gagna, Viktoriya Ozornova, M. Rovelli
{"title":"自由回路-自由ω-类的神经和锥体","authors":"Andrea Gagna, Viktoriya Ozornova, M. Rovelli","doi":"10.2140/tunis.2023.5.273","DOIUrl":null,"url":null,"abstract":"We show that the complicial nerve construction is homotopically compatible with two flavors of cone constructions when starting with an $\\omega$-category that is suitably free and loop-free. An instance of the result recovers the fact that the standard $m$-simplex is equivalent to the complicial nerve of the $m$-oriental.","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Nerves and cones of free loop-free\\nω-categories\",\"authors\":\"Andrea Gagna, Viktoriya Ozornova, M. Rovelli\",\"doi\":\"10.2140/tunis.2023.5.273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the complicial nerve construction is homotopically compatible with two flavors of cone constructions when starting with an $\\\\omega$-category that is suitably free and loop-free. An instance of the result recovers the fact that the standard $m$-simplex is equivalent to the complicial nerve of the $m$-oriental.\",\"PeriodicalId\":36030,\"journal\":{\"name\":\"Tunisian Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tunisian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/tunis.2023.5.273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunisian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/tunis.2023.5.273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

我们证明了当从一个适当自由和无环路的$\omega$-范畴开始时,复合神经结构与两种类型的锥体结构是同伦相容的。结果的一个实例恢复了一个事实,即标准的$m$-单纯形等价于$m$-东方的复神经。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nerves and cones of free loop-free ω-categories
We show that the complicial nerve construction is homotopically compatible with two flavors of cone constructions when starting with an $\omega$-category that is suitably free and loop-free. An instance of the result recovers the fact that the standard $m$-simplex is equivalent to the complicial nerve of the $m$-oriental.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tunisian Journal of Mathematics
Tunisian Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信