在球体和垂直振动的固体表面之间的液体桥的动力学

IF 2.4 3区 工程技术
A. F. Vallone, R. O. Uñac, D. Maza, A. M. Vidales
{"title":"在球体和垂直振动的固体表面之间的液体桥的动力学","authors":"A. F. Vallone,&nbsp;R. O. Uñac,&nbsp;D. Maza,&nbsp;A. M. Vidales","doi":"10.1007/s10035-023-01318-x","DOIUrl":null,"url":null,"abstract":"<div><p>This work presents an experimental study of the response of a liquid bridge formed between a sphere and a plane solid surface subjected to a vertical sinusoidal vibration. The amplitude and frequency of the oscillations can be varied. The successive movement of the particle along with the bridge deformation is registered to follow the dynamics of the system. The motivation is to figure out how capillary and viscosity forces can be modeled with the help of the experimental data obtained and to settle down a simplified theoretical approach capable of being implemented in the description of many phenomena involving wet granular grains. The results indicate that the viscosity effects can be neglected as soon as the amplitude of the movement is not too small, still obtaining a reasonable description of the dynamical behavior of the sphere/liquid-bridge system.</p><h3>Graphical abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"25 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the dynamics of a liquid bridge between a sphere and a vertically vibrated solid surface\",\"authors\":\"A. F. Vallone,&nbsp;R. O. Uñac,&nbsp;D. Maza,&nbsp;A. M. Vidales\",\"doi\":\"10.1007/s10035-023-01318-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work presents an experimental study of the response of a liquid bridge formed between a sphere and a plane solid surface subjected to a vertical sinusoidal vibration. The amplitude and frequency of the oscillations can be varied. The successive movement of the particle along with the bridge deformation is registered to follow the dynamics of the system. The motivation is to figure out how capillary and viscosity forces can be modeled with the help of the experimental data obtained and to settle down a simplified theoretical approach capable of being implemented in the description of many phenomena involving wet granular grains. The results indicate that the viscosity effects can be neglected as soon as the amplitude of the movement is not too small, still obtaining a reasonable description of the dynamical behavior of the sphere/liquid-bridge system.</p><h3>Graphical abstract</h3>\\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\\n </div>\",\"PeriodicalId\":49323,\"journal\":{\"name\":\"Granular Matter\",\"volume\":\"25 2\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Granular Matter\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10035-023-01318-x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-023-01318-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作提出了一个实验研究的响应,在一个球体和一个平面固体表面之间形成的液体桥受到垂直正弦振动。振荡的幅度和频率可以改变。记录粒子随桥梁变形的连续运动,以跟踪系统的动力学。其动机是弄清楚如何利用获得的实验数据来模拟毛细力和粘度力,并确定一种简化的理论方法,能够用于描述涉及湿颗粒颗粒的许多现象。结果表明,只要运动幅度不太小,粘度效应可以忽略不计,仍然可以合理地描述球/液桥系统的动力学行为。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the dynamics of a liquid bridge between a sphere and a vertically vibrated solid surface

On the dynamics of a liquid bridge between a sphere and a vertically vibrated solid surface

This work presents an experimental study of the response of a liquid bridge formed between a sphere and a plane solid surface subjected to a vertical sinusoidal vibration. The amplitude and frequency of the oscillations can be varied. The successive movement of the particle along with the bridge deformation is registered to follow the dynamics of the system. The motivation is to figure out how capillary and viscosity forces can be modeled with the help of the experimental data obtained and to settle down a simplified theoretical approach capable of being implemented in the description of many phenomena involving wet granular grains. The results indicate that the viscosity effects can be neglected as soon as the amplitude of the movement is not too small, still obtaining a reasonable description of the dynamical behavior of the sphere/liquid-bridge system.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Granular Matter
Granular Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-MECHANICS
CiteScore
4.30
自引率
8.30%
发文量
95
期刊介绍: Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science. These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations. >> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa. The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信