Stephanie A. Siehr, Minmin Sun, José Luis Aranda Nucamendi
{"title":"中国城市气候适应能力和城市多功能的蓝绿色基础设施","authors":"Stephanie A. Siehr, Minmin Sun, José Luis Aranda Nucamendi","doi":"10.1002/wene.447","DOIUrl":null,"url":null,"abstract":"Climate disruption and rapid urbanization present numerous challenges to infrastructure and communities in Chinese cities, from flooding and coastal erosion, to drought and pollution. This review article focuses on the utilization of Blue‐Green Infrastructure (BGI)—a suite of nature‐based strategies combining hydrological functions (blue) with vegetated landscaping (green)—to provide climate resilience and urban multifunctionality in China's large, high‐density cities. Chinese cities are utilizing BGI in new construction, in neighborhood retrofits, and in revival of ancient nature‐based infrastructure. The literature gives most attention to BGI in China's Sponge City Initiative that addresses the pluvial flooding crisis. Quantitative monitoring of BGI shows progress in stormwater‐related functions and to a lesser extent with rainwater utilization to address water scarcity. Other studies document multifunctional aspects of BGI, including cooling and energy‐saving functions of urban trees and green roofs, and green space expansion with parks that serve as retention basins. However, significant challenges and potential remain. China's urban infrastructure, including BGI, needs stronger design to be robust under extreme conditions as climate disruption intensifies. There is potential for BGI to more fully address habitat fragmentation, extreme heat, sea‐level rise and other climate and urbanization hazards. Further research and pilot projects are needed to characterize and quantify the benefits of multifunctional BGI. More integrated planning across city sectors, with greater incorporation of ecological and social functions, will help Chinese cities achieve multiple goals: providing carbon‐neutral and climate‐resilient infrastructure, improving air and water quality, regenerating ecosystems, and enhancing urban quality of life.","PeriodicalId":48766,"journal":{"name":"Wiley Interdisciplinary Reviews-Energy and Environment","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Blue‐green infrastructure for climate resilience and urban multifunctionality in Chinese cities\",\"authors\":\"Stephanie A. Siehr, Minmin Sun, José Luis Aranda Nucamendi\",\"doi\":\"10.1002/wene.447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Climate disruption and rapid urbanization present numerous challenges to infrastructure and communities in Chinese cities, from flooding and coastal erosion, to drought and pollution. This review article focuses on the utilization of Blue‐Green Infrastructure (BGI)—a suite of nature‐based strategies combining hydrological functions (blue) with vegetated landscaping (green)—to provide climate resilience and urban multifunctionality in China's large, high‐density cities. Chinese cities are utilizing BGI in new construction, in neighborhood retrofits, and in revival of ancient nature‐based infrastructure. The literature gives most attention to BGI in China's Sponge City Initiative that addresses the pluvial flooding crisis. Quantitative monitoring of BGI shows progress in stormwater‐related functions and to a lesser extent with rainwater utilization to address water scarcity. Other studies document multifunctional aspects of BGI, including cooling and energy‐saving functions of urban trees and green roofs, and green space expansion with parks that serve as retention basins. However, significant challenges and potential remain. China's urban infrastructure, including BGI, needs stronger design to be robust under extreme conditions as climate disruption intensifies. There is potential for BGI to more fully address habitat fragmentation, extreme heat, sea‐level rise and other climate and urbanization hazards. Further research and pilot projects are needed to characterize and quantify the benefits of multifunctional BGI. More integrated planning across city sectors, with greater incorporation of ecological and social functions, will help Chinese cities achieve multiple goals: providing carbon‐neutral and climate‐resilient infrastructure, improving air and water quality, regenerating ecosystems, and enhancing urban quality of life.\",\"PeriodicalId\":48766,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Energy and Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Energy and Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/wene.447\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Energy and Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/wene.447","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Blue‐green infrastructure for climate resilience and urban multifunctionality in Chinese cities
Climate disruption and rapid urbanization present numerous challenges to infrastructure and communities in Chinese cities, from flooding and coastal erosion, to drought and pollution. This review article focuses on the utilization of Blue‐Green Infrastructure (BGI)—a suite of nature‐based strategies combining hydrological functions (blue) with vegetated landscaping (green)—to provide climate resilience and urban multifunctionality in China's large, high‐density cities. Chinese cities are utilizing BGI in new construction, in neighborhood retrofits, and in revival of ancient nature‐based infrastructure. The literature gives most attention to BGI in China's Sponge City Initiative that addresses the pluvial flooding crisis. Quantitative monitoring of BGI shows progress in stormwater‐related functions and to a lesser extent with rainwater utilization to address water scarcity. Other studies document multifunctional aspects of BGI, including cooling and energy‐saving functions of urban trees and green roofs, and green space expansion with parks that serve as retention basins. However, significant challenges and potential remain. China's urban infrastructure, including BGI, needs stronger design to be robust under extreme conditions as climate disruption intensifies. There is potential for BGI to more fully address habitat fragmentation, extreme heat, sea‐level rise and other climate and urbanization hazards. Further research and pilot projects are needed to characterize and quantify the benefits of multifunctional BGI. More integrated planning across city sectors, with greater incorporation of ecological and social functions, will help Chinese cities achieve multiple goals: providing carbon‐neutral and climate‐resilient infrastructure, improving air and water quality, regenerating ecosystems, and enhancing urban quality of life.
期刊介绍:
Wiley Interdisciplinary Reviews: Energy and Environmentis a new type of review journal covering all aspects of energy technology, security and environmental impact.
Energy is one of the most critical resources for the welfare and prosperity of society. It also causes adverse environmental and societal effects, notably climate change which is the severest global problem in the modern age. Finding satisfactory solutions to the challenges ahead will need a linking of energy technology innovations, security, energy poverty, and environmental and climate impacts. The broad scope of energy issues demands collaboration between different disciplines of science and technology, and strong interaction between engineering, physical and life scientists, economists, sociologists and policy-makers.