S. Arba-Mosquera, Luise Krüger, P. Naubereit, Simas Sobutas, Shwetabh Verma, Len Zheleznyak, W. Knox
{"title":"激光诱导折射率变化(LIRIC)过程的分析优化:在不达到损伤阈值的情况下最大化LIRIC","authors":"S. Arba-Mosquera, Luise Krüger, P. Naubereit, Simas Sobutas, Shwetabh Verma, Len Zheleznyak, W. Knox","doi":"10.1515/aot-2021-0052","DOIUrl":null,"url":null,"abstract":"Abstract A method to determine the optimum laser parameters for maximizing laser induced refractive index change (LIRIC) while avoiding exceeding the damage threshold for different materials with high water content (in particular, polymers such as hydrogels or the human cornea) is proposed. The model is based upon two previous independent models for LIRIC and for laser induced optical breakdown (LIOB) threshold combined in a simple manner. This work provides qualitative and quantitative estimates for the parameters leading to a maximum LIRIC effect below the threshold of LIOB.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analytical optimization of the laser induced refractive index change (LIRIC) process: maximizing LIRIC without reaching the damage threshold\",\"authors\":\"S. Arba-Mosquera, Luise Krüger, P. Naubereit, Simas Sobutas, Shwetabh Verma, Len Zheleznyak, W. Knox\",\"doi\":\"10.1515/aot-2021-0052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A method to determine the optimum laser parameters for maximizing laser induced refractive index change (LIRIC) while avoiding exceeding the damage threshold for different materials with high water content (in particular, polymers such as hydrogels or the human cornea) is proposed. The model is based upon two previous independent models for LIRIC and for laser induced optical breakdown (LIOB) threshold combined in a simple manner. This work provides qualitative and quantitative estimates for the parameters leading to a maximum LIRIC effect below the threshold of LIOB.\",\"PeriodicalId\":46010,\"journal\":{\"name\":\"Advanced Optical Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2021-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Optical Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/aot-2021-0052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/aot-2021-0052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Analytical optimization of the laser induced refractive index change (LIRIC) process: maximizing LIRIC without reaching the damage threshold
Abstract A method to determine the optimum laser parameters for maximizing laser induced refractive index change (LIRIC) while avoiding exceeding the damage threshold for different materials with high water content (in particular, polymers such as hydrogels or the human cornea) is proposed. The model is based upon two previous independent models for LIRIC and for laser induced optical breakdown (LIOB) threshold combined in a simple manner. This work provides qualitative and quantitative estimates for the parameters leading to a maximum LIRIC effect below the threshold of LIOB.
期刊介绍:
Advanced Optical Technologies is a strictly peer-reviewed scientific journal. The major aim of Advanced Optical Technologies is to publish recent progress in the fields of optical design, optical engineering, and optical manufacturing. Advanced Optical Technologies has a main focus on applied research and addresses scientists as well as experts in industrial research and development. Advanced Optical Technologies partners with the European Optical Society (EOS). All its 4.500+ members have free online access to the journal through their EOS member account. Topics: Optical design, Lithography, Opto-mechanical engineering, Illumination and lighting technology, Precision fabrication, Image sensor devices, Optical materials (polymer based, inorganic, crystalline/amorphous), Optical instruments in life science (biology, medicine, laboratories), Optical metrology, Optics in aerospace/defense, Simulation, interdisciplinary, Optics for astronomy, Standards, Consumer optics, Optical coatings.