{"title":"基于DDPG的机动目标寻的制导律设计","authors":"Yan Liang, Jin Tang, Zhihui Bai, Kebo Li","doi":"10.1155/2023/4188037","DOIUrl":null,"url":null,"abstract":"A novel homing guidance law against maneuvering targets based on the deep deterministic policy gradient (DDPG) is proposed. The proposed guidance law directly maps the engagement state information to the acceleration of the interceptor, which is an end-to-end guidance policy. Firstly, the kinematic model of the interception process is described as a Markov decision process (MDP) that is applied to the deep reinforcement learning (DRL) algorithm. Then, an environment of training, state, action, and network structure is reasonably designed. Only the measurements of line-of-sight (LOS) angles and LOS rotational rates are used as state inputs, which can greatly simplify the problem of state estimation. Then, considering the LOS rotational rate and zero-effort-miss (ZEM), the Gaussian reward and terminal reward are designed to build a complete training and testing simulation environment. DDPG is used to deal with the RL problem to obtain a guidance law. Finally, the proposed RL guidance law’s performance has been validated using numerical simulation examples. The proposed RL guidance law demonstrated improved performance compared to the classical true proportional navigation (TPN) method and the RL guidance policy using deep-Q-network (DQN).","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homing Guidance Law Design against Maneuvering Targets Based on DDPG\",\"authors\":\"Yan Liang, Jin Tang, Zhihui Bai, Kebo Li\",\"doi\":\"10.1155/2023/4188037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel homing guidance law against maneuvering targets based on the deep deterministic policy gradient (DDPG) is proposed. The proposed guidance law directly maps the engagement state information to the acceleration of the interceptor, which is an end-to-end guidance policy. Firstly, the kinematic model of the interception process is described as a Markov decision process (MDP) that is applied to the deep reinforcement learning (DRL) algorithm. Then, an environment of training, state, action, and network structure is reasonably designed. Only the measurements of line-of-sight (LOS) angles and LOS rotational rates are used as state inputs, which can greatly simplify the problem of state estimation. Then, considering the LOS rotational rate and zero-effort-miss (ZEM), the Gaussian reward and terminal reward are designed to build a complete training and testing simulation environment. DDPG is used to deal with the RL problem to obtain a guidance law. Finally, the proposed RL guidance law’s performance has been validated using numerical simulation examples. The proposed RL guidance law demonstrated improved performance compared to the classical true proportional navigation (TPN) method and the RL guidance policy using deep-Q-network (DQN).\",\"PeriodicalId\":13748,\"journal\":{\"name\":\"International Journal of Aerospace Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Aerospace Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/4188037\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/4188037","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Homing Guidance Law Design against Maneuvering Targets Based on DDPG
A novel homing guidance law against maneuvering targets based on the deep deterministic policy gradient (DDPG) is proposed. The proposed guidance law directly maps the engagement state information to the acceleration of the interceptor, which is an end-to-end guidance policy. Firstly, the kinematic model of the interception process is described as a Markov decision process (MDP) that is applied to the deep reinforcement learning (DRL) algorithm. Then, an environment of training, state, action, and network structure is reasonably designed. Only the measurements of line-of-sight (LOS) angles and LOS rotational rates are used as state inputs, which can greatly simplify the problem of state estimation. Then, considering the LOS rotational rate and zero-effort-miss (ZEM), the Gaussian reward and terminal reward are designed to build a complete training and testing simulation environment. DDPG is used to deal with the RL problem to obtain a guidance law. Finally, the proposed RL guidance law’s performance has been validated using numerical simulation examples. The proposed RL guidance law demonstrated improved performance compared to the classical true proportional navigation (TPN) method and the RL guidance policy using deep-Q-network (DQN).
期刊介绍:
International Journal of Aerospace Engineering aims to serve the international aerospace engineering community through dissemination of scientific knowledge on practical engineering and design methodologies pertaining to aircraft and space vehicles.
Original unpublished manuscripts are solicited on all areas of aerospace engineering including but not limited to:
-Mechanics of materials and structures-
Aerodynamics and fluid mechanics-
Dynamics and control-
Aeroacoustics-
Aeroelasticity-
Propulsion and combustion-
Avionics and systems-
Flight simulation and mechanics-
Unmanned air vehicles (UAVs).
Review articles on any of the above topics are also welcome.