二维连续吸引子网络中的鲁棒工作记忆

IF 3.1 3区 工程技术 Q2 NEUROSCIENCES
Cognitive Neurodynamics Pub Date : 2024-12-01 Epub Date: 2023-05-29 DOI:10.1007/s11571-023-09979-3
Weronika Wojtak, Stephen Coombes, Daniele Avitabile, Estela Bicho, Wolfram Erlhagen
{"title":"二维连续吸引子网络中的鲁棒工作记忆","authors":"Weronika Wojtak, Stephen Coombes, Daniele Avitabile, Estela Bicho, Wolfram Erlhagen","doi":"10.1007/s11571-023-09979-3","DOIUrl":null,"url":null,"abstract":"<p><p>Continuous bump attractor networks (CANs) have been widely used in the past to explain the phenomenology of working memory (WM) tasks in which continuous-valued information has to be maintained to guide future behavior. Standard CAN models suffer from two major limitations: the stereotyped shape of the bump attractor does not reflect differences in the representational quality of WM items and the recurrent connections within the network require a biologically unrealistic level of fine tuning. We address both challenges in a two-dimensional (2D) network model formalized by two coupled neural field equations of Amari type. It combines the lateral-inhibition-type connectivity of classical CANs with a locally balanced excitatory and inhibitory feedback loop. We first use a radially symmetric connectivity to analyze the existence, stability and bifurcation structure of 2D bumps representing the conjunctive WM of two input dimensions. To address the quality of WM content, we show in model simulations that the bump amplitude reflects the temporal integration of bottom-up and top-down evidence for a specific combination of input features. This includes the network capacity to transform a stable subthreshold memory trace of a weak input into a high fidelity memory representation by an unspecific cue given retrospectively during WM maintenance. To address the fine-tuning problem, we test numerically different perturbations of the assumed radial symmetry of the connectivity function including random spatial fluctuations in the connection strength. Different to the behavior of standard CAN models, the bump does not drift in representational space but remains stationary at the input position.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":" ","pages":"3273-3289"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655900/pdf/","citationCount":"0","resultStr":"{\"title\":\"Robust working memory in a two-dimensional continuous attractor network.\",\"authors\":\"Weronika Wojtak, Stephen Coombes, Daniele Avitabile, Estela Bicho, Wolfram Erlhagen\",\"doi\":\"10.1007/s11571-023-09979-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Continuous bump attractor networks (CANs) have been widely used in the past to explain the phenomenology of working memory (WM) tasks in which continuous-valued information has to be maintained to guide future behavior. Standard CAN models suffer from two major limitations: the stereotyped shape of the bump attractor does not reflect differences in the representational quality of WM items and the recurrent connections within the network require a biologically unrealistic level of fine tuning. We address both challenges in a two-dimensional (2D) network model formalized by two coupled neural field equations of Amari type. It combines the lateral-inhibition-type connectivity of classical CANs with a locally balanced excitatory and inhibitory feedback loop. We first use a radially symmetric connectivity to analyze the existence, stability and bifurcation structure of 2D bumps representing the conjunctive WM of two input dimensions. To address the quality of WM content, we show in model simulations that the bump amplitude reflects the temporal integration of bottom-up and top-down evidence for a specific combination of input features. This includes the network capacity to transform a stable subthreshold memory trace of a weak input into a high fidelity memory representation by an unspecific cue given retrospectively during WM maintenance. To address the fine-tuning problem, we test numerically different perturbations of the assumed radial symmetry of the connectivity function including random spatial fluctuations in the connection strength. Different to the behavior of standard CAN models, the bump does not drift in representational space but remains stationary at the input position.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\" \",\"pages\":\"3273-3289\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655900/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-023-09979-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-023-09979-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Robust working memory in a two-dimensional continuous attractor network.

Robust working memory in a two-dimensional continuous attractor network.

Continuous bump attractor networks (CANs) have been widely used in the past to explain the phenomenology of working memory (WM) tasks in which continuous-valued information has to be maintained to guide future behavior. Standard CAN models suffer from two major limitations: the stereotyped shape of the bump attractor does not reflect differences in the representational quality of WM items and the recurrent connections within the network require a biologically unrealistic level of fine tuning. We address both challenges in a two-dimensional (2D) network model formalized by two coupled neural field equations of Amari type. It combines the lateral-inhibition-type connectivity of classical CANs with a locally balanced excitatory and inhibitory feedback loop. We first use a radially symmetric connectivity to analyze the existence, stability and bifurcation structure of 2D bumps representing the conjunctive WM of two input dimensions. To address the quality of WM content, we show in model simulations that the bump amplitude reflects the temporal integration of bottom-up and top-down evidence for a specific combination of input features. This includes the network capacity to transform a stable subthreshold memory trace of a weak input into a high fidelity memory representation by an unspecific cue given retrospectively during WM maintenance. To address the fine-tuning problem, we test numerically different perturbations of the assumed radial symmetry of the connectivity function including random spatial fluctuations in the connection strength. Different to the behavior of standard CAN models, the bump does not drift in representational space but remains stationary at the input position.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信