{"title":"两个循环群的直积群的表示图","authors":"Y. Yanita, Budi Rudianto","doi":"10.1155/2023/8018645","DOIUrl":null,"url":null,"abstract":"<jats:p>A picture in a group presentation is a geometric configuration with an arrangement of discs and arcs within a boundary disc. The drawing of this picture does not have to follow a particular rule, only using the generator as discs and the relation as arcs. It will form a picture label pattern if drawn with a particular rule. This paper discusses the label pattern of a picture in the presentation of direct product groups. Direct product presentation is used with two cyclic groups, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <msub>\n <mrow>\n <mi>ℤ</mi>\n </mrow>\n <mrow>\n <mi>p</mi>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <msub>\n <mrow>\n <mi>ℤ</mi>\n </mrow>\n <mrow>\n <mi>q</mi>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> where <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mi>p</mi>\n <mo>,</mo>\n <mi>q</mi>\n <mo>∈</mo>\n <msup>\n <mrow>\n <mi>ℤ</mi>\n </mrow>\n <mrow>\n <mo>+</mo>\n </mrow>\n </msup>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mi>p</mi>\n <mo>,</mo>\n <mi>q</mi>\n <mo>≥</mo>\n <mn>2</mn>\n </math>\n </jats:inline-formula>. The method for forming a picture label pattern is to arrange the first generator in the initial arrangement, compile a second generator, and add a number of commutators. Furthermore, the pattern is used to calculate the length of the label on the picture. It is obtained that the picture’s label is <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <msup>\n <mrow>\n <mi>a</mi>\n </mrow>\n <mrow>\n <mi>q</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <msup>\n <mrow>\n <mi>b</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msup>\n <mi>a</mi>\n <msup>\n <mrow>\n <mi>b</mi>\n </mrow>\n <mrow>\n <mi>q</mi>\n <mo>−</mo>\n <mi>n</mi>\n </mrow>\n </msup>\n </math>\n </jats:inline-formula> and the length of the label is <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mi>p</mi>\n <mo>+</mo>\n <mn>2</mn>\n <mi>n</mi>\n <mo>−</mo>\n <mi>q</mi>\n </math>\n </jats:inline-formula>, where <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <mi>n</mi>\n </math>\n </jats:inline-formula> is the number of commutator discs.</jats:p>","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Picture on the Presentation of Direct Product Group of Two Cyclic Groups\",\"authors\":\"Y. Yanita, Budi Rudianto\",\"doi\":\"10.1155/2023/8018645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>A picture in a group presentation is a geometric configuration with an arrangement of discs and arcs within a boundary disc. The drawing of this picture does not have to follow a particular rule, only using the generator as discs and the relation as arcs. It will form a picture label pattern if drawn with a particular rule. This paper discusses the label pattern of a picture in the presentation of direct product groups. Direct product presentation is used with two cyclic groups, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <msub>\\n <mrow>\\n <mi>ℤ</mi>\\n </mrow>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n </msub>\\n </math>\\n </jats:inline-formula> and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\">\\n <msub>\\n <mrow>\\n <mi>ℤ</mi>\\n </mrow>\\n <mrow>\\n <mi>q</mi>\\n </mrow>\\n </msub>\\n </math>\\n </jats:inline-formula> where <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\">\\n <mi>p</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n <mo>∈</mo>\\n <msup>\\n <mrow>\\n <mi>ℤ</mi>\\n </mrow>\\n <mrow>\\n <mo>+</mo>\\n </mrow>\\n </msup>\\n </math>\\n </jats:inline-formula> and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\">\\n <mi>p</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n <mo>≥</mo>\\n <mn>2</mn>\\n </math>\\n </jats:inline-formula>. The method for forming a picture label pattern is to arrange the first generator in the initial arrangement, compile a second generator, and add a number of commutators. Furthermore, the pattern is used to calculate the length of the label on the picture. It is obtained that the picture’s label is <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M5\\\">\\n <msup>\\n <mrow>\\n <mi>a</mi>\\n </mrow>\\n <mrow>\\n <mi>q</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <msup>\\n <mrow>\\n <mi>b</mi>\\n </mrow>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </msup>\\n <mi>a</mi>\\n <msup>\\n <mrow>\\n <mi>b</mi>\\n </mrow>\\n <mrow>\\n <mi>q</mi>\\n <mo>−</mo>\\n <mi>n</mi>\\n </mrow>\\n </msup>\\n </math>\\n </jats:inline-formula> and the length of the label is <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M6\\\">\\n <mi>p</mi>\\n <mo>+</mo>\\n <mn>2</mn>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mi>q</mi>\\n </math>\\n </jats:inline-formula>, where <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M7\\\">\\n <mi>n</mi>\\n </math>\\n </jats:inline-formula> is the number of commutator discs.</jats:p>\",\"PeriodicalId\":49251,\"journal\":{\"name\":\"Journal of Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/8018645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/8018645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
分组演示中的图片是一种几何配置,在边界圆盘内排列圆盘和圆弧。这张图的绘制不必遵循特定的规则,只需将生成器用作圆盘,将关系用作圆弧。如果使用特定规则绘制,它将形成图片标签图案。本文讨论了直接产品组表示中图片的标签模式。直接乘积表示与两个循环基团一起使用,ℤ p和ℤ 其中p,q∈ℤ + 且p、q≥2。形成图片标签图案的方法是将第一生成器排列在初始排列中,编译第二生成器,并添加多个换向器。此外,该图案用于计算图片上标签的长度。可以得出图片的标签是q−1b n a b q−n,并且标签的长度为p+2n-q,其中n是换向器片的数量。
The Picture on the Presentation of Direct Product Group of Two Cyclic Groups
A picture in a group presentation is a geometric configuration with an arrangement of discs and arcs within a boundary disc. The drawing of this picture does not have to follow a particular rule, only using the generator as discs and the relation as arcs. It will form a picture label pattern if drawn with a particular rule. This paper discusses the label pattern of a picture in the presentation of direct product groups. Direct product presentation is used with two cyclic groups, and where and . The method for forming a picture label pattern is to arrange the first generator in the initial arrangement, compile a second generator, and add a number of commutators. Furthermore, the pattern is used to calculate the length of the label on the picture. It is obtained that the picture’s label is and the length of the label is , where is the number of commutator discs.
期刊介绍:
Journal of Applied Mathematics is a refereed journal devoted to the publication of original research papers and review articles in all areas of applied, computational, and industrial mathematics.