两个循环群的直积群的表示图

IF 1.2 Q2 MATHEMATICS, APPLIED
Y. Yanita, Budi Rudianto
{"title":"两个循环群的直积群的表示图","authors":"Y. Yanita, Budi Rudianto","doi":"10.1155/2023/8018645","DOIUrl":null,"url":null,"abstract":"<jats:p>A picture in a group presentation is a geometric configuration with an arrangement of discs and arcs within a boundary disc. The drawing of this picture does not have to follow a particular rule, only using the generator as discs and the relation as arcs. It will form a picture label pattern if drawn with a particular rule. This paper discusses the label pattern of a picture in the presentation of direct product groups. Direct product presentation is used with two cyclic groups, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <msub>\n <mrow>\n <mi>ℤ</mi>\n </mrow>\n <mrow>\n <mi>p</mi>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <msub>\n <mrow>\n <mi>ℤ</mi>\n </mrow>\n <mrow>\n <mi>q</mi>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> where <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mi>p</mi>\n <mo>,</mo>\n <mi>q</mi>\n <mo>∈</mo>\n <msup>\n <mrow>\n <mi>ℤ</mi>\n </mrow>\n <mrow>\n <mo>+</mo>\n </mrow>\n </msup>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mi>p</mi>\n <mo>,</mo>\n <mi>q</mi>\n <mo>≥</mo>\n <mn>2</mn>\n </math>\n </jats:inline-formula>. The method for forming a picture label pattern is to arrange the first generator in the initial arrangement, compile a second generator, and add a number of commutators. Furthermore, the pattern is used to calculate the length of the label on the picture. It is obtained that the picture’s label is <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <msup>\n <mrow>\n <mi>a</mi>\n </mrow>\n <mrow>\n <mi>q</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <msup>\n <mrow>\n <mi>b</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msup>\n <mi>a</mi>\n <msup>\n <mrow>\n <mi>b</mi>\n </mrow>\n <mrow>\n <mi>q</mi>\n <mo>−</mo>\n <mi>n</mi>\n </mrow>\n </msup>\n </math>\n </jats:inline-formula> and the length of the label is <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mi>p</mi>\n <mo>+</mo>\n <mn>2</mn>\n <mi>n</mi>\n <mo>−</mo>\n <mi>q</mi>\n </math>\n </jats:inline-formula>, where <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <mi>n</mi>\n </math>\n </jats:inline-formula> is the number of commutator discs.</jats:p>","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Picture on the Presentation of Direct Product Group of Two Cyclic Groups\",\"authors\":\"Y. Yanita, Budi Rudianto\",\"doi\":\"10.1155/2023/8018645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>A picture in a group presentation is a geometric configuration with an arrangement of discs and arcs within a boundary disc. The drawing of this picture does not have to follow a particular rule, only using the generator as discs and the relation as arcs. It will form a picture label pattern if drawn with a particular rule. This paper discusses the label pattern of a picture in the presentation of direct product groups. Direct product presentation is used with two cyclic groups, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <msub>\\n <mrow>\\n <mi>ℤ</mi>\\n </mrow>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n </msub>\\n </math>\\n </jats:inline-formula> and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\">\\n <msub>\\n <mrow>\\n <mi>ℤ</mi>\\n </mrow>\\n <mrow>\\n <mi>q</mi>\\n </mrow>\\n </msub>\\n </math>\\n </jats:inline-formula> where <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\">\\n <mi>p</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n <mo>∈</mo>\\n <msup>\\n <mrow>\\n <mi>ℤ</mi>\\n </mrow>\\n <mrow>\\n <mo>+</mo>\\n </mrow>\\n </msup>\\n </math>\\n </jats:inline-formula> and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\">\\n <mi>p</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n <mo>≥</mo>\\n <mn>2</mn>\\n </math>\\n </jats:inline-formula>. The method for forming a picture label pattern is to arrange the first generator in the initial arrangement, compile a second generator, and add a number of commutators. Furthermore, the pattern is used to calculate the length of the label on the picture. It is obtained that the picture’s label is <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M5\\\">\\n <msup>\\n <mrow>\\n <mi>a</mi>\\n </mrow>\\n <mrow>\\n <mi>q</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <msup>\\n <mrow>\\n <mi>b</mi>\\n </mrow>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </msup>\\n <mi>a</mi>\\n <msup>\\n <mrow>\\n <mi>b</mi>\\n </mrow>\\n <mrow>\\n <mi>q</mi>\\n <mo>−</mo>\\n <mi>n</mi>\\n </mrow>\\n </msup>\\n </math>\\n </jats:inline-formula> and the length of the label is <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M6\\\">\\n <mi>p</mi>\\n <mo>+</mo>\\n <mn>2</mn>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mi>q</mi>\\n </math>\\n </jats:inline-formula>, where <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M7\\\">\\n <mi>n</mi>\\n </math>\\n </jats:inline-formula> is the number of commutator discs.</jats:p>\",\"PeriodicalId\":49251,\"journal\":{\"name\":\"Journal of Applied Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/8018645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/8018645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

分组演示中的图片是一种几何配置,在边界圆盘内排列圆盘和圆弧。这张图的绘制不必遵循特定的规则,只需将生成器用作圆盘,将关系用作圆弧。如果使用特定规则绘制,它将形成图片标签图案。本文讨论了直接产品组表示中图片的标签模式。直接乘积表示与两个循环基团一起使用,ℤ p和ℤ 其中p,q∈ℤ + 且p、q≥2。形成图片标签图案的方法是将第一生成器排列在初始排列中,编译第二生成器,并添加多个换向器。此外,该图案用于计算图片上标签的长度。可以得出图片的标签是q−1b n a b q−n,并且标签的长度为p+2n-q,其中n是换向器片的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Picture on the Presentation of Direct Product Group of Two Cyclic Groups
A picture in a group presentation is a geometric configuration with an arrangement of discs and arcs within a boundary disc. The drawing of this picture does not have to follow a particular rule, only using the generator as discs and the relation as arcs. It will form a picture label pattern if drawn with a particular rule. This paper discusses the label pattern of a picture in the presentation of direct product groups. Direct product presentation is used with two cyclic groups, p and q where p , q + and p , q 2 . The method for forming a picture label pattern is to arrange the first generator in the initial arrangement, compile a second generator, and add a number of commutators. Furthermore, the pattern is used to calculate the length of the label on the picture. It is obtained that the picture’s label is a q 1 b n a b q n and the length of the label is p + 2 n q , where n is the number of commutator discs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Mathematics
Journal of Applied Mathematics MATHEMATICS, APPLIED-
CiteScore
2.70
自引率
0.00%
发文量
58
审稿时长
3.2 months
期刊介绍: Journal of Applied Mathematics is a refereed journal devoted to the publication of original research papers and review articles in all areas of applied, computational, and industrial mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信