基于核糖体亚基交替位移的核糖体易位模型

IF 2.2 4区 生物学 Q3 BIOPHYSICS
José S. González-García
{"title":"基于核糖体亚基交替位移的核糖体易位模型","authors":"José S. González-García","doi":"10.1007/s00249-023-01662-z","DOIUrl":null,"url":null,"abstract":"<div><p>A meaningful dilemma in ribosome translocation arising from experimental facts is that, although the ribosome–mRNA interaction force always has a significant magnitude, the ribosome still moves to the next codon on the mRNA. How does the ribosome move to the next codon in the sequence while holding the mRNA tightly? The hypothesis proposed here is that ribosome subunits alternate the grip of the ribosome on the mRNA, freeing the other subunit of such interaction for a while, thus allowing its motion to the following codon. Based on this assumption, a single-loop cycle of ribosome configurations involving the relative position of its subunits is elaborated. When its dynamic is modeled as a Markov network, it gives expressions for the average ribosome translocation speed and stall force as functions of the equilibrium constants among the proposed ribosome configurations. The calculations have a reasonable agreement with experimental results, and the succession of molecular events considered here is consistent with current biomolecular concepts of the ribosome translocation process. Thus, the alternative displacements hypothesis developed in the present work suggests a feasible explanation of ribosome translocation.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"52 3","pages":"175 - 187"},"PeriodicalIF":2.2000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00249-023-01662-z.pdf","citationCount":"0","resultStr":"{\"title\":\"A model for ribosome translocation based on the alternated displacement of its subunits\",\"authors\":\"José S. González-García\",\"doi\":\"10.1007/s00249-023-01662-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A meaningful dilemma in ribosome translocation arising from experimental facts is that, although the ribosome–mRNA interaction force always has a significant magnitude, the ribosome still moves to the next codon on the mRNA. How does the ribosome move to the next codon in the sequence while holding the mRNA tightly? The hypothesis proposed here is that ribosome subunits alternate the grip of the ribosome on the mRNA, freeing the other subunit of such interaction for a while, thus allowing its motion to the following codon. Based on this assumption, a single-loop cycle of ribosome configurations involving the relative position of its subunits is elaborated. When its dynamic is modeled as a Markov network, it gives expressions for the average ribosome translocation speed and stall force as functions of the equilibrium constants among the proposed ribosome configurations. The calculations have a reasonable agreement with experimental results, and the succession of molecular events considered here is consistent with current biomolecular concepts of the ribosome translocation process. Thus, the alternative displacements hypothesis developed in the present work suggests a feasible explanation of ribosome translocation.</p></div>\",\"PeriodicalId\":548,\"journal\":{\"name\":\"European Biophysics Journal\",\"volume\":\"52 3\",\"pages\":\"175 - 187\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00249-023-01662-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Biophysics Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00249-023-01662-z\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Biophysics Journal","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s00249-023-01662-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

实验事实导致的核糖体易位的一个有意义的困境是,尽管核糖体- mRNA相互作用力总是具有显著的大小,但核糖体仍然移动到mRNA上的下一个密码子。核糖体如何移动到序列中的下一个密码子,同时紧紧握住mRNA ?这里提出的假设是,核糖体亚基交替控制核糖体对mRNA的控制,使另一个亚基暂时摆脱这种相互作用,从而允许其移动到下一个密码子。基于这一假设,核糖体构型的单环循环涉及其亚基的相对位置进行了阐述。将其动力学建模为马尔可夫网络时,给出了核糖体平均转运速度和失速力作为不同核糖体构型平衡常数的函数表达式。计算结果与实验结果有合理的一致性,这里考虑的分子事件的连续性与当前核糖体易位过程的生物分子概念是一致的。因此,在本工作中提出的替代置换假说为核糖体易位提供了一个可行的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A model for ribosome translocation based on the alternated displacement of its subunits

A model for ribosome translocation based on the alternated displacement of its subunits

A meaningful dilemma in ribosome translocation arising from experimental facts is that, although the ribosome–mRNA interaction force always has a significant magnitude, the ribosome still moves to the next codon on the mRNA. How does the ribosome move to the next codon in the sequence while holding the mRNA tightly? The hypothesis proposed here is that ribosome subunits alternate the grip of the ribosome on the mRNA, freeing the other subunit of such interaction for a while, thus allowing its motion to the following codon. Based on this assumption, a single-loop cycle of ribosome configurations involving the relative position of its subunits is elaborated. When its dynamic is modeled as a Markov network, it gives expressions for the average ribosome translocation speed and stall force as functions of the equilibrium constants among the proposed ribosome configurations. The calculations have a reasonable agreement with experimental results, and the succession of molecular events considered here is consistent with current biomolecular concepts of the ribosome translocation process. Thus, the alternative displacements hypothesis developed in the present work suggests a feasible explanation of ribosome translocation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Biophysics Journal
European Biophysics Journal 生物-生物物理
CiteScore
4.30
自引率
0.00%
发文量
43
审稿时长
6-12 weeks
期刊介绍: The journal publishes papers in the field of biophysics, which is defined as the study of biological phenomena by using physical methods and concepts. Original papers, reviews and Biophysics letters are published. The primary goal of this journal is to advance the understanding of biological structure and function by application of the principles of physical science, and by presenting the work in a biophysical context. Papers employing a distinctively biophysical approach at all levels of biological organisation will be considered, as will both experimental and theoretical studies. The criteria for acceptance are scientific content, originality and relevance to biological systems of current interest and importance. Principal areas of interest include: - Structure and dynamics of biological macromolecules - Membrane biophysics and ion channels - Cell biophysics and organisation - Macromolecular assemblies - Biophysical methods and instrumentation - Advanced microscopics - System dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信