结合拉曼光谱和红外光谱数据,用振动方法推导出盖晶石(MgTiO3)和钛铁矿(FeTiO3)的热力学性质

IF 1.2 4区 地球科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Michael H. G. Jacobs, Arie P. van den Berg, Rainer Schmid-Fetzer, Jellie de Vries, Wim van Westrenen, Yue Zhao
{"title":"结合拉曼光谱和红外光谱数据,用振动方法推导出盖晶石(MgTiO3)和钛铁矿(FeTiO3)的热力学性质","authors":"Michael H. G. Jacobs,&nbsp;Arie P. van den Berg,&nbsp;Rainer Schmid-Fetzer,&nbsp;Jellie de Vries,&nbsp;Wim van Westrenen,&nbsp;Yue Zhao","doi":"10.1007/s00269-022-01195-5","DOIUrl":null,"url":null,"abstract":"<div><p>We present a model for the lattice vibrational density of states of MgTiO<sub>3</sub> (geikielite) and FeTiO<sub>3</sub> (ilmenite) that predicts thermodynamic properties, in agreement with observational data. The model is based on Kieffer’s method combined with spectroscopic data. For both substances experimental data sets are influenced by non-stoichiometry. For geikielite that affects the volume, whereas for ilmenite volume and bulk modulus are affected. We show that Kieffer’s method enables predicting bulk moduli in pressure–temperature space. We demonstrate that intrinsic anharmonicity or electronic effects significantly affect the heat capacity of ilmenite, whereas that is not the case for geikielite. We use Kieffer’s method to derive multiple-Einstein models, from which we demonstrate that thermodynamic properties are insignificantly influenced by dispersion in Grüneisen, mode-q and anharmonicity parameters for both substances. We show that our results enable predicting thermodynamic properties and shear modulus of the solid solution formed from geikielite and ilmenite. Geikielite and ilmenite are added to our thermodynamic database for the system MgO–SiO<sub>2</sub>–FeO, to enable modeling phase stability and physical properties of titanium-rich reservoirs in the Earth’s Moon.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-022-01195-5.pdf","citationCount":"2","resultStr":"{\"title\":\"Thermodynamic properties of geikielite (MgTiO3) and ilmenite (FeTiO3) derived from vibrational methods combined with Raman and infrared spectroscopic data\",\"authors\":\"Michael H. G. Jacobs,&nbsp;Arie P. van den Berg,&nbsp;Rainer Schmid-Fetzer,&nbsp;Jellie de Vries,&nbsp;Wim van Westrenen,&nbsp;Yue Zhao\",\"doi\":\"10.1007/s00269-022-01195-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a model for the lattice vibrational density of states of MgTiO<sub>3</sub> (geikielite) and FeTiO<sub>3</sub> (ilmenite) that predicts thermodynamic properties, in agreement with observational data. The model is based on Kieffer’s method combined with spectroscopic data. For both substances experimental data sets are influenced by non-stoichiometry. For geikielite that affects the volume, whereas for ilmenite volume and bulk modulus are affected. We show that Kieffer’s method enables predicting bulk moduli in pressure–temperature space. We demonstrate that intrinsic anharmonicity or electronic effects significantly affect the heat capacity of ilmenite, whereas that is not the case for geikielite. We use Kieffer’s method to derive multiple-Einstein models, from which we demonstrate that thermodynamic properties are insignificantly influenced by dispersion in Grüneisen, mode-q and anharmonicity parameters for both substances. We show that our results enable predicting thermodynamic properties and shear modulus of the solid solution formed from geikielite and ilmenite. Geikielite and ilmenite are added to our thermodynamic database for the system MgO–SiO<sub>2</sub>–FeO, to enable modeling phase stability and physical properties of titanium-rich reservoirs in the Earth’s Moon.</p></div>\",\"PeriodicalId\":20132,\"journal\":{\"name\":\"Physics and Chemistry of Minerals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00269-022-01195-5.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Chemistry of Minerals\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00269-022-01195-5\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Minerals","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00269-022-01195-5","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了MgTiO3(盖晶石)和FeTiO3(钛铁矿)的晶格振动密度模型,该模型可以预测热力学性质,与观测数据一致。该模型是基于基弗方法结合光谱数据建立的。对于这两种物质,实验数据集都受到非化学计量的影响。对于盖晶石,影响体积,而对于钛铁矿,影响体积和体积模量。我们表明Kieffer的方法能够预测压力-温度空间中的体积模量。我们证明了钛铁矿的内在非调和性或电子效应显著地影响了钛铁矿的热容量,而对钛矿则不是这样。我们使用Kieffer的方法推导了多重爱因斯坦模型,从中我们证明了两种物质的grisen、模式q和非调和参数的色散对热力学性质的影响不显著。我们表明,我们的结果能够预测由盖氏石和钛铁矿形成的固溶体的热力学性质和剪切模量。Geikielite和钛铁矿被添加到我们的MgO-SiO2-FeO系统热力学数据库中,以模拟地球月球富钛储层的相稳定性和物理性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermodynamic properties of geikielite (MgTiO3) and ilmenite (FeTiO3) derived from vibrational methods combined with Raman and infrared spectroscopic data

We present a model for the lattice vibrational density of states of MgTiO3 (geikielite) and FeTiO3 (ilmenite) that predicts thermodynamic properties, in agreement with observational data. The model is based on Kieffer’s method combined with spectroscopic data. For both substances experimental data sets are influenced by non-stoichiometry. For geikielite that affects the volume, whereas for ilmenite volume and bulk modulus are affected. We show that Kieffer’s method enables predicting bulk moduli in pressure–temperature space. We demonstrate that intrinsic anharmonicity or electronic effects significantly affect the heat capacity of ilmenite, whereas that is not the case for geikielite. We use Kieffer’s method to derive multiple-Einstein models, from which we demonstrate that thermodynamic properties are insignificantly influenced by dispersion in Grüneisen, mode-q and anharmonicity parameters for both substances. We show that our results enable predicting thermodynamic properties and shear modulus of the solid solution formed from geikielite and ilmenite. Geikielite and ilmenite are added to our thermodynamic database for the system MgO–SiO2–FeO, to enable modeling phase stability and physical properties of titanium-rich reservoirs in the Earth’s Moon.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics and Chemistry of Minerals
Physics and Chemistry of Minerals 地学-材料科学:综合
CiteScore
2.90
自引率
14.30%
发文量
43
审稿时长
3 months
期刊介绍: Physics and Chemistry of Minerals is an international journal devoted to publishing articles and short communications of physical or chemical studies on minerals or solids related to minerals. The aim of the journal is to support competent interdisciplinary work in mineralogy and physics or chemistry. Particular emphasis is placed on applications of modern techniques or new theories and models to interpret atomic structures and physical or chemical properties of minerals. Some subjects of interest are: -Relationships between atomic structure and crystalline state (structures of various states, crystal energies, crystal growth, thermodynamic studies, phase transformations, solid solution, exsolution phenomena, etc.) -General solid state spectroscopy (ultraviolet, visible, infrared, Raman, ESCA, luminescence, X-ray, electron paramagnetic resonance, nuclear magnetic resonance, gamma ray resonance, etc.) -Experimental and theoretical analysis of chemical bonding in minerals (application of crystal field, molecular orbital, band theories, etc.) -Physical properties (magnetic, mechanical, electric, optical, thermodynamic, etc.) -Relations between thermal expansion, compressibility, elastic constants, and fundamental properties of atomic structure, particularly as applied to geophysical problems -Electron microscopy in support of physical and chemical studies -Computational methods in the study of the structure and properties of minerals -Mineral surfaces (experimental methods, structure and properties)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信