{"title":"用表面分析技术研究玻璃初级包装","authors":"Giovanna Pintori, Serena Panighello, Odra Pinato, Elti Cattaruzza","doi":"10.1111/ijag.16628","DOIUrl":null,"url":null,"abstract":"<p>During the forming process of a vial by tubing glass, temperatures of up to 1200°C are applied to adjust the glass viscosity. This process causes the release of volatile components such as alkali borates. Consequently, the percentage of sodium and boron measured on the inner surface of the vial can be higher than that measured on the corresponding glass tube. This study aimed to characterize the inner surface of two different borosilicate glass tubes of type I before and after the vial forming process at the nanoscale level. Quantitative elemental analysis of the surface along the vertical axis of glass tubes and vials was performed by X-ray photoelectron spectroscopy, whereas the topographical investigation was carried out by scanning electron microscopy (SEM). In the near-bottom region of a vial, which is usually the area most prone to corrosion, the SEM micrographs showed the appearance of bulges on the surface. The latter were then analyzed by time-of-flight secondary ion mass spectrometry to characterize their molecular composition. The purpose of this work is to identify possible new strategies for faster identification of factors that eventually influence chemical resistance of pharmaceutical glasses and to provide useful information needed to improve industrial processes.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"14 3","pages":"468-479"},"PeriodicalIF":2.1000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights on surface analysis techniques to study glass primary packaging\",\"authors\":\"Giovanna Pintori, Serena Panighello, Odra Pinato, Elti Cattaruzza\",\"doi\":\"10.1111/ijag.16628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>During the forming process of a vial by tubing glass, temperatures of up to 1200°C are applied to adjust the glass viscosity. This process causes the release of volatile components such as alkali borates. Consequently, the percentage of sodium and boron measured on the inner surface of the vial can be higher than that measured on the corresponding glass tube. This study aimed to characterize the inner surface of two different borosilicate glass tubes of type I before and after the vial forming process at the nanoscale level. Quantitative elemental analysis of the surface along the vertical axis of glass tubes and vials was performed by X-ray photoelectron spectroscopy, whereas the topographical investigation was carried out by scanning electron microscopy (SEM). In the near-bottom region of a vial, which is usually the area most prone to corrosion, the SEM micrographs showed the appearance of bulges on the surface. The latter were then analyzed by time-of-flight secondary ion mass spectrometry to characterize their molecular composition. The purpose of this work is to identify possible new strategies for faster identification of factors that eventually influence chemical resistance of pharmaceutical glasses and to provide useful information needed to improve industrial processes.</p>\",\"PeriodicalId\":13850,\"journal\":{\"name\":\"International Journal of Applied Glass Science\",\"volume\":\"14 3\",\"pages\":\"468-479\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Glass Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16628\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Glass Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16628","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Insights on surface analysis techniques to study glass primary packaging
During the forming process of a vial by tubing glass, temperatures of up to 1200°C are applied to adjust the glass viscosity. This process causes the release of volatile components such as alkali borates. Consequently, the percentage of sodium and boron measured on the inner surface of the vial can be higher than that measured on the corresponding glass tube. This study aimed to characterize the inner surface of two different borosilicate glass tubes of type I before and after the vial forming process at the nanoscale level. Quantitative elemental analysis of the surface along the vertical axis of glass tubes and vials was performed by X-ray photoelectron spectroscopy, whereas the topographical investigation was carried out by scanning electron microscopy (SEM). In the near-bottom region of a vial, which is usually the area most prone to corrosion, the SEM micrographs showed the appearance of bulges on the surface. The latter were then analyzed by time-of-flight secondary ion mass spectrometry to characterize their molecular composition. The purpose of this work is to identify possible new strategies for faster identification of factors that eventually influence chemical resistance of pharmaceutical glasses and to provide useful information needed to improve industrial processes.
期刊介绍:
The International Journal of Applied Glass Science (IJAGS) endeavors to be an indispensable source of information dealing with the application of glass science and engineering across the entire materials spectrum. Through the solicitation, editing, and publishing of cutting-edge peer-reviewed papers, IJAGS will be a highly respected and enduring chronicle of major advances in applied glass science throughout this century. It will be of critical value to the work of scientists, engineers, educators, students, and organizations involved in the research, manufacture and utilization of the material glass. Guided by an International Advisory Board, IJAGS will focus on topical issue themes that broadly encompass the advanced description, application, modeling, manufacture, and experimental investigation of glass.