{"title":"原位定制三维锂金属电极的固体电解质界面以提高库仑效率","authors":"Jiang-Peng Wang, Feng Lang, Quan Li","doi":"10.1002/eom2.12354","DOIUrl":null,"url":null,"abstract":"<p>Although three-dimensional (3D) lithium metal electrode is effective in restricting the Li dendrite growth upon cycling, problems associated with the unstable electrode/electrolyte interphase become more severe due to increased interfacial area that is intrinsic of the 3D structures, being a major cause for the low Columbic efficiency. While building a desirable solid electrolyte interphase (SEI) serves as an effective solution to improve the electrode/electrolyte interfacial stability, the 3D nature of the electrode makes the task challenging. In the present work, we demonstrated the in-situ formation of SEI on chemically/structurally modified carbon cloth that is used as the 3D host electrode for Li metal. Here we show that ZnS/ZnO nanotube arrays uniformly grown on the carbon cloth served as precursors for the in-situ formation of Li<sub>2</sub>S/Li<sub>2</sub>O/LiZn containing artificial SEI in the first lithiation process. While Li<sub>2</sub>S and Li<sub>2</sub>O are preferred components in SEI, the in situ generated Zn functions as a lithiophilic site that guides the uniform lithium deposition upon repeated charging/discharging process. As a result, symmetric cells adopting the O-, S-, and Zn- modified 3D anode demonstrate significantly improved Coulombic efficiency (99.2% over 400 cycles at 1 mA cm<sup>−2</sup>/1 mA h cm<sup>−2</sup>). Furthermore, the Li/ZSONT/CC//LiFePO<sub>4</sub> full cell shows a capacity retention of 71% after 4000 cycles at 2C. The present work sheds light on effective design strategies for SEI formation on a 3D electrode host with controllable SEI composition.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"5 7","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12354","citationCount":"1","resultStr":"{\"title\":\"In situ tailoring solid electrolyte interphase of three-dimensional Li metal electrode for enhanced Coulombic efficiency\",\"authors\":\"Jiang-Peng Wang, Feng Lang, Quan Li\",\"doi\":\"10.1002/eom2.12354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Although three-dimensional (3D) lithium metal electrode is effective in restricting the Li dendrite growth upon cycling, problems associated with the unstable electrode/electrolyte interphase become more severe due to increased interfacial area that is intrinsic of the 3D structures, being a major cause for the low Columbic efficiency. While building a desirable solid electrolyte interphase (SEI) serves as an effective solution to improve the electrode/electrolyte interfacial stability, the 3D nature of the electrode makes the task challenging. In the present work, we demonstrated the in-situ formation of SEI on chemically/structurally modified carbon cloth that is used as the 3D host electrode for Li metal. Here we show that ZnS/ZnO nanotube arrays uniformly grown on the carbon cloth served as precursors for the in-situ formation of Li<sub>2</sub>S/Li<sub>2</sub>O/LiZn containing artificial SEI in the first lithiation process. While Li<sub>2</sub>S and Li<sub>2</sub>O are preferred components in SEI, the in situ generated Zn functions as a lithiophilic site that guides the uniform lithium deposition upon repeated charging/discharging process. As a result, symmetric cells adopting the O-, S-, and Zn- modified 3D anode demonstrate significantly improved Coulombic efficiency (99.2% over 400 cycles at 1 mA cm<sup>−2</sup>/1 mA h cm<sup>−2</sup>). Furthermore, the Li/ZSONT/CC//LiFePO<sub>4</sub> full cell shows a capacity retention of 71% after 4000 cycles at 2C. The present work sheds light on effective design strategies for SEI formation on a 3D electrode host with controllable SEI composition.</p><p>\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":93174,\"journal\":{\"name\":\"EcoMat\",\"volume\":\"5 7\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2023-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12354\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EcoMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
In situ tailoring solid electrolyte interphase of three-dimensional Li metal electrode for enhanced Coulombic efficiency
Although three-dimensional (3D) lithium metal electrode is effective in restricting the Li dendrite growth upon cycling, problems associated with the unstable electrode/electrolyte interphase become more severe due to increased interfacial area that is intrinsic of the 3D structures, being a major cause for the low Columbic efficiency. While building a desirable solid electrolyte interphase (SEI) serves as an effective solution to improve the electrode/electrolyte interfacial stability, the 3D nature of the electrode makes the task challenging. In the present work, we demonstrated the in-situ formation of SEI on chemically/structurally modified carbon cloth that is used as the 3D host electrode for Li metal. Here we show that ZnS/ZnO nanotube arrays uniformly grown on the carbon cloth served as precursors for the in-situ formation of Li2S/Li2O/LiZn containing artificial SEI in the first lithiation process. While Li2S and Li2O are preferred components in SEI, the in situ generated Zn functions as a lithiophilic site that guides the uniform lithium deposition upon repeated charging/discharging process. As a result, symmetric cells adopting the O-, S-, and Zn- modified 3D anode demonstrate significantly improved Coulombic efficiency (99.2% over 400 cycles at 1 mA cm−2/1 mA h cm−2). Furthermore, the Li/ZSONT/CC//LiFePO4 full cell shows a capacity retention of 71% after 4000 cycles at 2C. The present work sheds light on effective design strategies for SEI formation on a 3D electrode host with controllable SEI composition.