{"title":"球面上的大地测量轨道Randers度量","authors":"Shaoxiang Zhang, Zaili Yan","doi":"10.1515/ADVGEOM-2020-0015","DOIUrl":null,"url":null,"abstract":"Abstract Studying geodesic orbit Randers metrics on spheres, we obtain a complete classification of such metrics. Our method relies upon the classification of geodesic orbit Riemannian metrics on the spheres Sn in [17] and the navigation data in Finsler geometry. We also construct some explicit U(n + 1)-invariant metrics on S2n+1 and Sp(n + 1)U(1)-invariant metrics on S4n+3.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Geodesic orbit Randers metrics on spheres\",\"authors\":\"Shaoxiang Zhang, Zaili Yan\",\"doi\":\"10.1515/ADVGEOM-2020-0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Studying geodesic orbit Randers metrics on spheres, we obtain a complete classification of such metrics. Our method relies upon the classification of geodesic orbit Riemannian metrics on the spheres Sn in [17] and the navigation data in Finsler geometry. We also construct some explicit U(n + 1)-invariant metrics on S2n+1 and Sp(n + 1)U(1)-invariant metrics on S4n+3.\",\"PeriodicalId\":7335,\"journal\":{\"name\":\"Advances in Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ADVGEOM-2020-0015\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ADVGEOM-2020-0015","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract Studying geodesic orbit Randers metrics on spheres, we obtain a complete classification of such metrics. Our method relies upon the classification of geodesic orbit Riemannian metrics on the spheres Sn in [17] and the navigation data in Finsler geometry. We also construct some explicit U(n + 1)-invariant metrics on S2n+1 and Sp(n + 1)U(1)-invariant metrics on S4n+3.
期刊介绍:
Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.