{"title":"灵敏度,局部稳定/不稳定集和阴影","authors":"Mayara Antunes, B. Carvalho, Margoth Tacuri","doi":"10.1080/14689367.2023.2206545","DOIUrl":null,"url":null,"abstract":"In this paper, we study local stable/unstable sets of sensitive homeomorphisms with the shadowing property defined on compact metric spaces. We prove that local stable/unstable sets always contain a compact and perfect subset of the space. As a corollary, we generalize results in [Artigue et al. Beyond topological hyperbolicity: the Lshadowing property, J. Differ. Equ. 268(6) (2020), pp. 3057–3080.] and [Carvalho and Cordeiro, Positively N-expansive homeomorphisms and the L-shadowing property, J. Dyn. Differ. Equ. 31(2) (2019), pp. 1005–1016.] proving that positively countably expansive homeomorphisms defined on compact metric spaces satisfying either transitivity and the shadowing property, or the L-shadowing property, can only be defined in countable spaces.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sensitivity, local stable/unstable sets and shadowing\",\"authors\":\"Mayara Antunes, B. Carvalho, Margoth Tacuri\",\"doi\":\"10.1080/14689367.2023.2206545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study local stable/unstable sets of sensitive homeomorphisms with the shadowing property defined on compact metric spaces. We prove that local stable/unstable sets always contain a compact and perfect subset of the space. As a corollary, we generalize results in [Artigue et al. Beyond topological hyperbolicity: the Lshadowing property, J. Differ. Equ. 268(6) (2020), pp. 3057–3080.] and [Carvalho and Cordeiro, Positively N-expansive homeomorphisms and the L-shadowing property, J. Dyn. Differ. Equ. 31(2) (2019), pp. 1005–1016.] proving that positively countably expansive homeomorphisms defined on compact metric spaces satisfying either transitivity and the shadowing property, or the L-shadowing property, can only be defined in countable spaces.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/14689367.2023.2206545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2023.2206545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sensitivity, local stable/unstable sets and shadowing
In this paper, we study local stable/unstable sets of sensitive homeomorphisms with the shadowing property defined on compact metric spaces. We prove that local stable/unstable sets always contain a compact and perfect subset of the space. As a corollary, we generalize results in [Artigue et al. Beyond topological hyperbolicity: the Lshadowing property, J. Differ. Equ. 268(6) (2020), pp. 3057–3080.] and [Carvalho and Cordeiro, Positively N-expansive homeomorphisms and the L-shadowing property, J. Dyn. Differ. Equ. 31(2) (2019), pp. 1005–1016.] proving that positively countably expansive homeomorphisms defined on compact metric spaces satisfying either transitivity and the shadowing property, or the L-shadowing property, can only be defined in countable spaces.