{"title":"YOLO-v5变量选择算法与代表性增广相结合用于轻型托盘货架自动化检测中基于生产的方差建模","authors":"Muhammad Hussain","doi":"10.3390/bdcc7020120","DOIUrl":null,"url":null,"abstract":"The aim of this research is to develop an automated pallet inspection architecture with two key objectives: high performance with respect to defect classification and computational efficacy, i.e., lightweight footprint. As automated pallet racking via machine vision is a developing field, the procurement of racking datasets can be a difficult task. Therefore, the first contribution of this study was the proposal of several tailored augmentations that were generated based on modelling production floor conditions/variances within warehouses. Secondly, the variant selection algorithm was proposed, starting with extreme-end analysis and providing a protocol for selecting the optimal architecture with respect to accuracy and computational efficiency. The proposed YOLO-v5n architecture generated the highest MAP@0.5 of 96.8% compared to previous works in the racking domain, with a computational footprint in terms of the number of parameters at its lowest, i.e., 1.9 M compared to YOLO-v5x at 86.7 M.","PeriodicalId":36397,"journal":{"name":"Big Data and Cognitive Computing","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"YOLO-v5 Variant Selection Algorithm Coupled with Representative Augmentations for Modelling Production-Based Variance in Automated Lightweight Pallet Racking Inspection\",\"authors\":\"Muhammad Hussain\",\"doi\":\"10.3390/bdcc7020120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this research is to develop an automated pallet inspection architecture with two key objectives: high performance with respect to defect classification and computational efficacy, i.e., lightweight footprint. As automated pallet racking via machine vision is a developing field, the procurement of racking datasets can be a difficult task. Therefore, the first contribution of this study was the proposal of several tailored augmentations that were generated based on modelling production floor conditions/variances within warehouses. Secondly, the variant selection algorithm was proposed, starting with extreme-end analysis and providing a protocol for selecting the optimal architecture with respect to accuracy and computational efficiency. The proposed YOLO-v5n architecture generated the highest MAP@0.5 of 96.8% compared to previous works in the racking domain, with a computational footprint in terms of the number of parameters at its lowest, i.e., 1.9 M compared to YOLO-v5x at 86.7 M.\",\"PeriodicalId\":36397,\"journal\":{\"name\":\"Big Data and Cognitive Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data and Cognitive Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/bdcc7020120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data and Cognitive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/bdcc7020120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
YOLO-v5 Variant Selection Algorithm Coupled with Representative Augmentations for Modelling Production-Based Variance in Automated Lightweight Pallet Racking Inspection
The aim of this research is to develop an automated pallet inspection architecture with two key objectives: high performance with respect to defect classification and computational efficacy, i.e., lightweight footprint. As automated pallet racking via machine vision is a developing field, the procurement of racking datasets can be a difficult task. Therefore, the first contribution of this study was the proposal of several tailored augmentations that were generated based on modelling production floor conditions/variances within warehouses. Secondly, the variant selection algorithm was proposed, starting with extreme-end analysis and providing a protocol for selecting the optimal architecture with respect to accuracy and computational efficiency. The proposed YOLO-v5n architecture generated the highest MAP@0.5 of 96.8% compared to previous works in the racking domain, with a computational footprint in terms of the number of parameters at its lowest, i.e., 1.9 M compared to YOLO-v5x at 86.7 M.