NiTi的强制SHS压实

IF 0.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yu. V. Bogatov, V. A. Shcherbakov, A. V. Karpov, A. E. Sytschev, D. Yu. Kovalev
{"title":"NiTi的强制SHS压实","authors":"Yu. V. Bogatov,&nbsp;V. A. Shcherbakov,&nbsp;A. V. Karpov,&nbsp;A. E. Sytschev,&nbsp;D. Yu. Kovalev","doi":"10.3103/S1061386222050028","DOIUrl":null,"url":null,"abstract":"<p>NiTi samples with a density of 6.65 g/cm<sup>3</sup> were prepared by forced SHS compaction from Ni + Ti powder mixture in an equiatomic ratio. Synthesized alloy was studied by scanning electron microscopy and X-ray diffraction analysis. It was shown that SHS-compacted sample contain NiTi (B2 + R) in addition to secondary phases: Ti<sub>2</sub>Ni, Ni<sub>4</sub>Ti<sub>3</sub>, and Ni. Electrical resistivity as a function of temperature in the range of 290–1150 K was studied.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"31 4","pages":"247 - 252"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forced SHS Compaction of NiTi\",\"authors\":\"Yu. V. Bogatov,&nbsp;V. A. Shcherbakov,&nbsp;A. V. Karpov,&nbsp;A. E. Sytschev,&nbsp;D. Yu. Kovalev\",\"doi\":\"10.3103/S1061386222050028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>NiTi samples with a density of 6.65 g/cm<sup>3</sup> were prepared by forced SHS compaction from Ni + Ti powder mixture in an equiatomic ratio. Synthesized alloy was studied by scanning electron microscopy and X-ray diffraction analysis. It was shown that SHS-compacted sample contain NiTi (B2 + R) in addition to secondary phases: Ti<sub>2</sub>Ni, Ni<sub>4</sub>Ti<sub>3</sub>, and Ni. Electrical resistivity as a function of temperature in the range of 290–1150 K was studied.</p>\",\"PeriodicalId\":595,\"journal\":{\"name\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"volume\":\"31 4\",\"pages\":\"247 - 252\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1061386222050028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Self-Propagating High-Temperature Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1061386222050028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

以等原子比的Ni + Ti粉末混合物为原料,采用强制SHS压实法制备了密度为6.65 g/cm3的NiTi样品。通过扫描电镜和x射线衍射分析对合成合金进行了研究。结果表明,shs压实试样除含有Ti2Ni、Ni4Ti3和Ni等次生相外,还含有NiTi (B2 + R)。研究了在290 ~ 1150 K范围内电阻率随温度的变化规律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Forced SHS Compaction of NiTi

Forced SHS Compaction of NiTi

NiTi samples with a density of 6.65 g/cm3 were prepared by forced SHS compaction from Ni + Ti powder mixture in an equiatomic ratio. Synthesized alloy was studied by scanning electron microscopy and X-ray diffraction analysis. It was shown that SHS-compacted sample contain NiTi (B2 + R) in addition to secondary phases: Ti2Ni, Ni4Ti3, and Ni. Electrical resistivity as a function of temperature in the range of 290–1150 K was studied.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
33.30%
发文量
27
期刊介绍: International Journal of Self-Propagating High-Temperature Synthesis  is an international journal covering a wide range of topics concerned with self-propagating high-temperature synthesis (SHS), the process for the production of advanced materials based on solid-state combustion utilizing internally generated chemical energy. Subjects range from the fundamentals of SHS processes, chemistry and technology of SHS products and advanced materials to problems concerned with related fields, such as the kinetics and thermodynamics of high-temperature chemical reactions, combustion theory, macroscopic kinetics of nonisothermic processes, etc. The journal is intended to provide a wide-ranging exchange of research results and a better understanding of developmental and innovative trends in SHS science and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信