lawvere代数理论中loday集合映射的推广

IF 1.1 2区 数学 Q1 MATHEMATICS
A. Bohmann, Markus Szymik
{"title":"lawvere代数理论中loday集合映射的推广","authors":"A. Bohmann, Markus Szymik","doi":"10.1017/s1474748022000603","DOIUrl":null,"url":null,"abstract":"\n Loday’s assembly maps approximate the K-theory of group rings by the K-theory of the coefficient ring and the corresponding homology of the group. We present a generalisation that places both ingredients on the same footing. Building on Elmendorf–Mandell’s multiplicativity results and our earlier work, we show that the K-theory of Lawvere theories is lax monoidal. This result makes it possible to present our theory in a user-friendly way without using higher-categorical language. It also allows us to extend the idea to new contexts and set up a nonabelian interpolation scheme, raising novel questions. Numerous examples illustrate the scope of our extension.","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"GENERALISATIONS OF LODAY’S ASSEMBLY MAPS FOR LAWVERE’S ALGEBRAIC THEORIES\",\"authors\":\"A. Bohmann, Markus Szymik\",\"doi\":\"10.1017/s1474748022000603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Loday’s assembly maps approximate the K-theory of group rings by the K-theory of the coefficient ring and the corresponding homology of the group. We present a generalisation that places both ingredients on the same footing. Building on Elmendorf–Mandell’s multiplicativity results and our earlier work, we show that the K-theory of Lawvere theories is lax monoidal. This result makes it possible to present our theory in a user-friendly way without using higher-categorical language. It also allows us to extend the idea to new contexts and set up a nonabelian interpolation scheme, raising novel questions. Numerous examples illustrate the scope of our extension.\",\"PeriodicalId\":50002,\"journal\":{\"name\":\"Journal of the Institute of Mathematics of Jussieu\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Institute of Mathematics of Jussieu\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s1474748022000603\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Institute of Mathematics of Jussieu","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1474748022000603","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

Loday装配映射通过系数环的K理论和群的相应同调来近似群环的K论。我们提出了一个将两种成分放在同一基础上的概括。在Elmendorf–Mandell的乘法性结果和我们早期的工作的基础上,我们证明了Lawvere理论中的K理论是松弛单胚的。这一结果使得我们可以在不使用更高分类语言的情况下,以用户友好的方式呈现我们的理论。它还允许我们将这一想法扩展到新的环境中,并建立一个非贝利插值方案,从而提出了新的问题。许多例子说明了我们的扩展范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GENERALISATIONS OF LODAY’S ASSEMBLY MAPS FOR LAWVERE’S ALGEBRAIC THEORIES
Loday’s assembly maps approximate the K-theory of group rings by the K-theory of the coefficient ring and the corresponding homology of the group. We present a generalisation that places both ingredients on the same footing. Building on Elmendorf–Mandell’s multiplicativity results and our earlier work, we show that the K-theory of Lawvere theories is lax monoidal. This result makes it possible to present our theory in a user-friendly way without using higher-categorical language. It also allows us to extend the idea to new contexts and set up a nonabelian interpolation scheme, raising novel questions. Numerous examples illustrate the scope of our extension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
54
审稿时长
>12 weeks
期刊介绍: The Journal of the Institute of Mathematics of Jussieu publishes original research papers in any branch of pure mathematics; papers in logic and applied mathematics will also be considered, particularly when they have direct connections with pure mathematics. Its policy is to feature a wide variety of research areas and it welcomes the submission of papers from all parts of the world. Selection for publication is on the basis of reports from specialist referees commissioned by the Editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信