实时路径跟踪绘制中虚拟现实的非均匀去噪

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Victor Peres , Esteban Clua , Thiago Porcino , Anselmo Montenegro
{"title":"实时路径跟踪绘制中虚拟现实的非均匀去噪","authors":"Victor Peres ,&nbsp;Esteban Clua ,&nbsp;Thiago Porcino ,&nbsp;Anselmo Montenegro","doi":"10.1016/j.gmod.2023.101184","DOIUrl":null,"url":null,"abstract":"<div><p>Real time Path-tracing is becoming an important approach for the future of games, digital entertainment, and virtual reality applications that require realism and immersive environments. Among different possible optimizations, denoising Monte Carlo rendered images is necessary in low sampling densities. When dealing with Virtual Reality devices, other possibilities can also be considered, such as foveated rendering techniques. Hence, this work proposes a novel and promising rendering pipeline for denoising a real-time path-traced application in a dual-screen system such as head-mounted display (HMD) devices. Therefore, we leverage characteristics of the foveal vision by computing G-Buffers with the features of the scene and a buffer with the foveated distribution for both left and right screens. Later, we path trace the image within the coordinates buffer generating only a few initial rays per selected pixel, and reconstruct the noisy image output with a novel non-homogeneous denoiser that accounts for the pixel distribution. Our experiments showed that this proposed rendering pipeline could achieve a speedup factor up to 1.35 compared to one without our optimizations.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"129 ","pages":"Article 101184"},"PeriodicalIF":2.5000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-homogeneous denoising for virtual reality in real-time path tracing rendering\",\"authors\":\"Victor Peres ,&nbsp;Esteban Clua ,&nbsp;Thiago Porcino ,&nbsp;Anselmo Montenegro\",\"doi\":\"10.1016/j.gmod.2023.101184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Real time Path-tracing is becoming an important approach for the future of games, digital entertainment, and virtual reality applications that require realism and immersive environments. Among different possible optimizations, denoising Monte Carlo rendered images is necessary in low sampling densities. When dealing with Virtual Reality devices, other possibilities can also be considered, such as foveated rendering techniques. Hence, this work proposes a novel and promising rendering pipeline for denoising a real-time path-traced application in a dual-screen system such as head-mounted display (HMD) devices. Therefore, we leverage characteristics of the foveal vision by computing G-Buffers with the features of the scene and a buffer with the foveated distribution for both left and right screens. Later, we path trace the image within the coordinates buffer generating only a few initial rays per selected pixel, and reconstruct the noisy image output with a novel non-homogeneous denoiser that accounts for the pixel distribution. Our experiments showed that this proposed rendering pipeline could achieve a speedup factor up to 1.35 compared to one without our optimizations.</p></div>\",\"PeriodicalId\":55083,\"journal\":{\"name\":\"Graphical Models\",\"volume\":\"129 \",\"pages\":\"Article 101184\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphical Models\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1524070323000140\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070323000140","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

实时路径追踪正在成为未来游戏、数字娱乐和虚拟现实应用的重要方法,这些应用需要现实主义和沉浸式环境。在各种可能的优化中,在低采样密度下对蒙特卡罗渲染图像去噪是必要的。在处理虚拟现实设备时,还可以考虑其他可能性,例如注视点渲染技术。因此,这项工作提出了一种新颖而有前途的渲染管道,用于在双屏幕系统(如头戴式显示器(HMD)设备)中对实时路径跟踪应用进行去噪。因此,我们通过计算具有场景特征的G-Buffers和具有左右屏幕注视点分布的缓冲区来利用中央凹视觉的特征。随后,我们在坐标缓冲区内对图像进行路径跟踪,每个选定的像素只产生少量初始射线,并使用考虑像素分布的新型非均匀去噪器重建噪声图像输出。我们的实验表明,与没有优化的情况下相比,这个提议的渲染管道可以实现高达1.35的加速因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-homogeneous denoising for virtual reality in real-time path tracing rendering

Real time Path-tracing is becoming an important approach for the future of games, digital entertainment, and virtual reality applications that require realism and immersive environments. Among different possible optimizations, denoising Monte Carlo rendered images is necessary in low sampling densities. When dealing with Virtual Reality devices, other possibilities can also be considered, such as foveated rendering techniques. Hence, this work proposes a novel and promising rendering pipeline for denoising a real-time path-traced application in a dual-screen system such as head-mounted display (HMD) devices. Therefore, we leverage characteristics of the foveal vision by computing G-Buffers with the features of the scene and a buffer with the foveated distribution for both left and right screens. Later, we path trace the image within the coordinates buffer generating only a few initial rays per selected pixel, and reconstruct the noisy image output with a novel non-homogeneous denoiser that accounts for the pixel distribution. Our experiments showed that this proposed rendering pipeline could achieve a speedup factor up to 1.35 compared to one without our optimizations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Graphical Models
Graphical Models 工程技术-计算机:软件工程
CiteScore
3.60
自引率
5.90%
发文量
15
审稿时长
47 days
期刊介绍: Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics. We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way). GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信