车载内置径向永磁发电机转子磁动势分析

IF 0.9 Q4 ENGINEERING, MECHANICAL
Huihui Geng, Xueyi Zhang, Tao Si, Lanian Tong, Qingzhi Ma, Mingjun Xu
{"title":"车载内置径向永磁发电机转子磁动势分析","authors":"Huihui Geng, Xueyi Zhang, Tao Si, Lanian Tong, Qingzhi Ma, Mingjun Xu","doi":"10.1155/2021/5319615","DOIUrl":null,"url":null,"abstract":"Permanent magnet generator (PMG) for vehicles has attracted more and more attention because of its high efficiency, high power density, and high reliability. However, the weak main air-gap magnetic field can affect the output performance and the normal use of electrical equipment. Aiming at the problem, this paper took the rotor magnetomotive force (MMF), the direct influencing parameter of the main air-gap magnetic field, as the research object, deduced the analytical expression of rotor MMF of the built-in radial PMG in detail, and analyzed its main influencing factors in analytical expression, including the permanent magnet steel (PMS) material, the thickness of PMS in magnetizing direction, the vertical length of the inner side of PMS, and the effective calculation length of PMS. Based on this, the rotor parameters were optimized to obtain the best values. After that, the finite element simulation and prototype test of the optimized generator were carried out. The comparative analysis results showed that the optimized rotor parameters could effectively improve the rotor MMF and optimize the output performance of the generator.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of the Rotor Magnetomotive Force of Built-In Radial Permanent Magnet Generator for Vehicle\",\"authors\":\"Huihui Geng, Xueyi Zhang, Tao Si, Lanian Tong, Qingzhi Ma, Mingjun Xu\",\"doi\":\"10.1155/2021/5319615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Permanent magnet generator (PMG) for vehicles has attracted more and more attention because of its high efficiency, high power density, and high reliability. However, the weak main air-gap magnetic field can affect the output performance and the normal use of electrical equipment. Aiming at the problem, this paper took the rotor magnetomotive force (MMF), the direct influencing parameter of the main air-gap magnetic field, as the research object, deduced the analytical expression of rotor MMF of the built-in radial PMG in detail, and analyzed its main influencing factors in analytical expression, including the permanent magnet steel (PMS) material, the thickness of PMS in magnetizing direction, the vertical length of the inner side of PMS, and the effective calculation length of PMS. Based on this, the rotor parameters were optimized to obtain the best values. After that, the finite element simulation and prototype test of the optimized generator were carried out. The comparative analysis results showed that the optimized rotor parameters could effectively improve the rotor MMF and optimize the output performance of the generator.\",\"PeriodicalId\":46335,\"journal\":{\"name\":\"International Journal of Rotating Machinery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Rotating Machinery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/5319615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rotating Machinery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/5319615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

摘要

车用永磁发电机(PMG)以其高效率、高功率密度和高可靠性而受到越来越多的关注。然而,微弱的主气隙磁场会影响电气设备的输出性能和正常使用。针对这一问题,本文以主气隙磁场的直接影响参数转子磁动势(MMF)为研究对象,详细推导了内置径向永磁体转子磁动力的解析表达式,并在解析表达式中分析了其主要影响因素,包括永磁体钢(PMS)材料,PMS在磁化方向上的厚度、PMS内侧的垂直长度以及PMS的有效计算长度。在此基础上,对转子参数进行了优化,以获得最佳值。然后,对优化后的发电机进行了有限元仿真和样机试验。对比分析结果表明,优化后的转子参数可以有效地提高转子MMF,优化发电机的输出性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of the Rotor Magnetomotive Force of Built-In Radial Permanent Magnet Generator for Vehicle
Permanent magnet generator (PMG) for vehicles has attracted more and more attention because of its high efficiency, high power density, and high reliability. However, the weak main air-gap magnetic field can affect the output performance and the normal use of electrical equipment. Aiming at the problem, this paper took the rotor magnetomotive force (MMF), the direct influencing parameter of the main air-gap magnetic field, as the research object, deduced the analytical expression of rotor MMF of the built-in radial PMG in detail, and analyzed its main influencing factors in analytical expression, including the permanent magnet steel (PMS) material, the thickness of PMS in magnetizing direction, the vertical length of the inner side of PMS, and the effective calculation length of PMS. Based on this, the rotor parameters were optimized to obtain the best values. After that, the finite element simulation and prototype test of the optimized generator were carried out. The comparative analysis results showed that the optimized rotor parameters could effectively improve the rotor MMF and optimize the output performance of the generator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
10
审稿时长
25 weeks
期刊介绍: This comprehensive journal provides the latest information on rotating machines and machine elements. This technology has become essential to many industrial processes, including gas-, steam-, water-, or wind-driven turbines at power generation systems, and in food processing, automobile and airplane engines, heating, refrigeration, air conditioning, and chemical or petroleum refining. In spite of the importance of rotating machinery and the huge financial resources involved in the industry, only a few publications distribute research and development information on the prime movers. This journal is the first source to combine the technology, as it applies to all of these specialties, previously scattered throughout literature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信