{"title":"无线传感器网络中集成优化传感器部署模型","authors":"P. Vishal, A. R. Babu","doi":"10.1080/13614576.2020.1742768","DOIUrl":null,"url":null,"abstract":"ABSTRACT Target coverage (TCOV) and network connectivity (NCON) are the most basic problems affecting robust data communication and environmental sensing in a wireless sensor network (WSN) application. This article proposes an intelligent Context Aware Sensor Network (CASN) for the process of sensor deployment in WSNs. Accordingly, the process is sub-divided into two phases. In the initial phase, optimal TCOV is performed; whereas, in the second phase, the proposed algorithm establishes NCON among the sensors. The objective model that meets both TCOV and NCON is evaluated as the minimization problem. This problem is solved by a new method that hybridizes the Artificial Bee Colony (ABC) algorithm and the Whale Optimization Algorithm (WOA) together, which is known as the Onlooker Probability-based WOA (OP-WOA) for the determination of optimal sensor locations. In addition, the adopted OP-WOA model is compared with the Genetic Algorithm (GA), the Particle Swarm Optimization (PSO), the ABC algorithm, Differential Evolution (DE), FireFly (FF), the WOA, and the Evolutionary Algorithm (EA)-based TCOV and NCON models. Finally, the results attained from the execution demonstrate the enhanced performance of the implemented OP-WOA technique.","PeriodicalId":35726,"journal":{"name":"New Review of Information Networking","volume":"25 1","pages":"47 - 70"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/13614576.2020.1742768","citationCount":"1","resultStr":"{\"title\":\"An Integrated Optimization Enabled Sensor Deployment Model in Wireless Sensor Network\",\"authors\":\"P. Vishal, A. R. Babu\",\"doi\":\"10.1080/13614576.2020.1742768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Target coverage (TCOV) and network connectivity (NCON) are the most basic problems affecting robust data communication and environmental sensing in a wireless sensor network (WSN) application. This article proposes an intelligent Context Aware Sensor Network (CASN) for the process of sensor deployment in WSNs. Accordingly, the process is sub-divided into two phases. In the initial phase, optimal TCOV is performed; whereas, in the second phase, the proposed algorithm establishes NCON among the sensors. The objective model that meets both TCOV and NCON is evaluated as the minimization problem. This problem is solved by a new method that hybridizes the Artificial Bee Colony (ABC) algorithm and the Whale Optimization Algorithm (WOA) together, which is known as the Onlooker Probability-based WOA (OP-WOA) for the determination of optimal sensor locations. In addition, the adopted OP-WOA model is compared with the Genetic Algorithm (GA), the Particle Swarm Optimization (PSO), the ABC algorithm, Differential Evolution (DE), FireFly (FF), the WOA, and the Evolutionary Algorithm (EA)-based TCOV and NCON models. Finally, the results attained from the execution demonstrate the enhanced performance of the implemented OP-WOA technique.\",\"PeriodicalId\":35726,\"journal\":{\"name\":\"New Review of Information Networking\",\"volume\":\"25 1\",\"pages\":\"47 - 70\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/13614576.2020.1742768\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Review of Information Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/13614576.2020.1742768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Review of Information Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13614576.2020.1742768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
An Integrated Optimization Enabled Sensor Deployment Model in Wireless Sensor Network
ABSTRACT Target coverage (TCOV) and network connectivity (NCON) are the most basic problems affecting robust data communication and environmental sensing in a wireless sensor network (WSN) application. This article proposes an intelligent Context Aware Sensor Network (CASN) for the process of sensor deployment in WSNs. Accordingly, the process is sub-divided into two phases. In the initial phase, optimal TCOV is performed; whereas, in the second phase, the proposed algorithm establishes NCON among the sensors. The objective model that meets both TCOV and NCON is evaluated as the minimization problem. This problem is solved by a new method that hybridizes the Artificial Bee Colony (ABC) algorithm and the Whale Optimization Algorithm (WOA) together, which is known as the Onlooker Probability-based WOA (OP-WOA) for the determination of optimal sensor locations. In addition, the adopted OP-WOA model is compared with the Genetic Algorithm (GA), the Particle Swarm Optimization (PSO), the ABC algorithm, Differential Evolution (DE), FireFly (FF), the WOA, and the Evolutionary Algorithm (EA)-based TCOV and NCON models. Finally, the results attained from the execution demonstrate the enhanced performance of the implemented OP-WOA technique.
期刊介绍:
Information networking is an enabling technology with the potential to integrate and transform information provision, communication and learning. The New Review of Information Networking, published biannually, provides an expert source on the needs and behaviour of the network user; the role of networks in teaching, learning, research and scholarly communication; the implications of networks for library and information services; the development of campus and other information strategies; the role of information publishers on the networks; policies for funding and charging for network and information services; and standards and protocols for network applications.