概圆域中的随机正规矩阵

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sunggyu Byun, Seong-Mi Seo
{"title":"概圆域中的随机正规矩阵","authors":"Sunggyu Byun, Seong-Mi Seo","doi":"10.3150/22-bej1514","DOIUrl":null,"url":null,"abstract":"We study random normal matrix models whose eigenvalues tend to be distributed within a narrow\"band\"around the unit circle of width proportional to $\\frac1n$, where $n$ is the size of matrices. For general radially symmetric potentials with various boundary conditions, we derive the scaling limits of the correlation functions, some of which appear in the previous literature notably in the context of almost-Hermitian random matrices. We also obtain that fluctuations of the maximal and minimal modulus of the ensembles follow the Gumbel or exponential law depending on the boundary conditions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Random normal matrices in the almost-circular regime\",\"authors\":\"Sunggyu Byun, Seong-Mi Seo\",\"doi\":\"10.3150/22-bej1514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study random normal matrix models whose eigenvalues tend to be distributed within a narrow\\\"band\\\"around the unit circle of width proportional to $\\\\frac1n$, where $n$ is the size of matrices. For general radially symmetric potentials with various boundary conditions, we derive the scaling limits of the correlation functions, some of which appear in the previous literature notably in the context of almost-Hermitian random matrices. We also obtain that fluctuations of the maximal and minimal modulus of the ensembles follow the Gumbel or exponential law depending on the boundary conditions.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3150/22-bej1514\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3150/22-bej1514","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 13

摘要

我们研究随机正规矩阵模型,其特征值倾向于分布在宽度与$\frac1n$成比例的单位圆周围的窄“带”内,其中$n$是矩阵的大小。对于具有各种边界条件的一般径向对称势,我们导出了相关函数的标度极限,其中一些出现在以前的文献中,特别是在几乎埃尔米特随机矩阵的情况下。我们还获得了系综的最大和最小模量的波动遵循Gumbel或指数定律,这取决于边界条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random normal matrices in the almost-circular regime
We study random normal matrix models whose eigenvalues tend to be distributed within a narrow"band"around the unit circle of width proportional to $\frac1n$, where $n$ is the size of matrices. For general radially symmetric potentials with various boundary conditions, we derive the scaling limits of the correlation functions, some of which appear in the previous literature notably in the context of almost-Hermitian random matrices. We also obtain that fluctuations of the maximal and minimal modulus of the ensembles follow the Gumbel or exponential law depending on the boundary conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信