实时高温和加载速率对花岗岩I型断裂韧性的影响

IF 2.9 2区 地球科学 Q3 ENERGY & FUELS
Ke Yang, Fan Zhang, Fan-zhen Meng, Da-wei Hu, Xian-feng Tan
{"title":"实时高温和加载速率对花岗岩I型断裂韧性的影响","authors":"Ke Yang,&nbsp;Fan Zhang,&nbsp;Fan-zhen Meng,&nbsp;Da-wei Hu,&nbsp;Xian-feng Tan","doi":"10.1186/s40517-022-00225-3","DOIUrl":null,"url":null,"abstract":"<div><p>An in-depth understanding of the effect of real-time high temperature and loading rate on the fracture toughness of rocks is highly important for understanding the fracture mechanism of Hot Dry Rock (HDR). Three-point bending tests on notched semi-circular bending (NSCB) samples at the real-time temperatures (25, 100, 200, 300, 400 and 500 ℃) and different loading rates (0.1, 0.01 and 0.001 mm/min) were performed to characterize the temperature and rate dependence of the mode I fracture toughness. Besides, the characteristic of the fracture surface morphology was investigated by scanning electron microscope (SEM) and crack deviation distance analysis. Results show that the temperature has a significant effect on the development of intergranular and transgranular cracks. The fracture toughness and peak load are similarly influenced by temperature (i.e., they both decrease with increasing temperature). At the loading rates of 0.1 mm/min and 0.01 mm/min, from 25 to 400 °C, the fracture toughness decreases slightly with decreasing loading rates. However, at a loading rate of 0.001 mm/min, the fracture toughness values above 200 °C are very similar, and the fracture toughness does not strictly follow the law of decreasing with decreasing loading rate. Especially at 500 °C, fracture toughness and loading rate are negatively correlated. Our study also indicates that the effect of loading rate on macroscopic crack propagation path at real-time high temperature is not obvious. This study could provide an important basis for evaluating the safety and stability of geothermal engineering.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-022-00225-3","citationCount":"3","resultStr":"{\"title\":\"Effect of real-time high temperature and loading rate on mode I fracture toughness of granite\",\"authors\":\"Ke Yang,&nbsp;Fan Zhang,&nbsp;Fan-zhen Meng,&nbsp;Da-wei Hu,&nbsp;Xian-feng Tan\",\"doi\":\"10.1186/s40517-022-00225-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An in-depth understanding of the effect of real-time high temperature and loading rate on the fracture toughness of rocks is highly important for understanding the fracture mechanism of Hot Dry Rock (HDR). Three-point bending tests on notched semi-circular bending (NSCB) samples at the real-time temperatures (25, 100, 200, 300, 400 and 500 ℃) and different loading rates (0.1, 0.01 and 0.001 mm/min) were performed to characterize the temperature and rate dependence of the mode I fracture toughness. Besides, the characteristic of the fracture surface morphology was investigated by scanning electron microscope (SEM) and crack deviation distance analysis. Results show that the temperature has a significant effect on the development of intergranular and transgranular cracks. The fracture toughness and peak load are similarly influenced by temperature (i.e., they both decrease with increasing temperature). At the loading rates of 0.1 mm/min and 0.01 mm/min, from 25 to 400 °C, the fracture toughness decreases slightly with decreasing loading rates. However, at a loading rate of 0.001 mm/min, the fracture toughness values above 200 °C are very similar, and the fracture toughness does not strictly follow the law of decreasing with decreasing loading rate. Especially at 500 °C, fracture toughness and loading rate are negatively correlated. Our study also indicates that the effect of loading rate on macroscopic crack propagation path at real-time high temperature is not obvious. This study could provide an important basis for evaluating the safety and stability of geothermal engineering.</p></div>\",\"PeriodicalId\":48643,\"journal\":{\"name\":\"Geothermal Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-022-00225-3\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geothermal Energy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40517-022-00225-3\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermal Energy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s40517-022-00225-3","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 3

摘要

深入了解实时高温和加载速率对岩石断裂韧性的影响,对于理解干热岩断裂机理具有重要意义。对缺口半圆弯曲(NSCB)试样在25、100、200、300、400和500℃实时温度和0.1、0.01和0.001 mm/min加载速率下的三点弯曲试验,表征了I型断裂韧性与温度和速率的关系。此外,通过扫描电镜(SEM)和裂纹偏差距离分析研究了断口形貌特征。结果表明,温度对沿晶和穿晶裂纹的发展有显著影响。断裂韧性和峰值载荷同样受温度的影响(均随温度升高而降低)。在加载速率为0.1 mm/min和0.01 mm/min时,从25℃到400℃,随着加载速率的降低,断裂韧性略有下降。而在加载速率为0.001 mm/min时,200℃以上的断裂韧性值非常相似,断裂韧性并不严格遵循随加载速率降低而降低的规律。特别是在500℃时,断裂韧性与加载速率呈负相关。研究还表明,加载速率对实时高温下宏观裂纹扩展路径的影响并不明显。该研究可为地热工程的安全性和稳定性评价提供重要依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of real-time high temperature and loading rate on mode I fracture toughness of granite

An in-depth understanding of the effect of real-time high temperature and loading rate on the fracture toughness of rocks is highly important for understanding the fracture mechanism of Hot Dry Rock (HDR). Three-point bending tests on notched semi-circular bending (NSCB) samples at the real-time temperatures (25, 100, 200, 300, 400 and 500 ℃) and different loading rates (0.1, 0.01 and 0.001 mm/min) were performed to characterize the temperature and rate dependence of the mode I fracture toughness. Besides, the characteristic of the fracture surface morphology was investigated by scanning electron microscope (SEM) and crack deviation distance analysis. Results show that the temperature has a significant effect on the development of intergranular and transgranular cracks. The fracture toughness and peak load are similarly influenced by temperature (i.e., they both decrease with increasing temperature). At the loading rates of 0.1 mm/min and 0.01 mm/min, from 25 to 400 °C, the fracture toughness decreases slightly with decreasing loading rates. However, at a loading rate of 0.001 mm/min, the fracture toughness values above 200 °C are very similar, and the fracture toughness does not strictly follow the law of decreasing with decreasing loading rate. Especially at 500 °C, fracture toughness and loading rate are negatively correlated. Our study also indicates that the effect of loading rate on macroscopic crack propagation path at real-time high temperature is not obvious. This study could provide an important basis for evaluating the safety and stability of geothermal engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geothermal Energy
Geothermal Energy Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
7.10%
发文量
25
审稿时长
8 weeks
期刊介绍: Geothermal Energy is a peer-reviewed fully open access journal published under the SpringerOpen brand. It focuses on fundamental and applied research needed to deploy technologies for developing and integrating geothermal energy as one key element in the future energy portfolio. Contributions include geological, geophysical, and geochemical studies; exploration of geothermal fields; reservoir characterization and modeling; development of productivity-enhancing methods; and approaches to achieve robust and economic plant operation. Geothermal Energy serves to examine the interaction of individual system components while taking the whole process into account, from the development of the reservoir to the economic provision of geothermal energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信