粘胶红酵母微生物类胡萝卜素食品级脂质体的制备及稳定性研究

IF 5.6 3区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Mariana Vilar Castro da Veiga de Mattos, Mariano Michelon, Janaina Fernandes de Medeiros Burkert
{"title":"粘胶红酵母微生物类胡萝卜素食品级脂质体的制备及稳定性研究","authors":"Mariana Vilar Castro da Veiga de Mattos,&nbsp;Mariano Michelon,&nbsp;Janaina Fernandes de Medeiros Burkert","doi":"10.1016/j.foostr.2022.100282","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>We demonstrated the technical feasibility of obtaining carotenoids-loaded liposomes from soybean </span>lecithins<span> using an ethanol injection technique. We evaluated the influence of three lecithin-types with different phosphatidylcholine content and microbial </span></span>carotenoids produced by yeast </span><em>Rhodotorula mucilaginosa</em><span> on liposome properties. The liposomal systems were characterized by average hydrodynamic diameter, polydispersity index, ζ-potential, and stability under different pH and heat temperature conditions commonly observed in food processing. The lecithin type and concentration used to produce liposomes significantly influence the hydrodynamic diameter, polydispersity index, and ζ-potential. In general, we observed the presence of liposomes with diameters ranging from 150 to 221 nm and a polydispersity index of approximately 0.300 when Lipoid S45 was used. The incorporation of microbial carotenoids promoted a significant increase in hydrodynamic diameter and ζ-potential, while carotenoid-loaded liposomes showed a lower polydispersity index. The carotenoid-loaded liposomes submitted to pH 3 presented a visual phase separation, while liposomes submitted at 70 °C for 15 min showed degradation of carotenoids equal to control assay (without treatment). We concluded that it is possible to incorporate microbial carotenoids in food-grade liposomal systems, allowing for further studies aimed at their application as an encapsulating and/or delivery system to be used in aqueous food products.</span></p></div>","PeriodicalId":48640,"journal":{"name":"Food Structure-Netherlands","volume":"33 ","pages":"Article 100282"},"PeriodicalIF":5.6000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Production and stability of food-grade liposomes containing microbial carotenoids from Rhodotorula mucilaginosa\",\"authors\":\"Mariana Vilar Castro da Veiga de Mattos,&nbsp;Mariano Michelon,&nbsp;Janaina Fernandes de Medeiros Burkert\",\"doi\":\"10.1016/j.foostr.2022.100282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>We demonstrated the technical feasibility of obtaining carotenoids-loaded liposomes from soybean </span>lecithins<span> using an ethanol injection technique. We evaluated the influence of three lecithin-types with different phosphatidylcholine content and microbial </span></span>carotenoids produced by yeast </span><em>Rhodotorula mucilaginosa</em><span> on liposome properties. The liposomal systems were characterized by average hydrodynamic diameter, polydispersity index, ζ-potential, and stability under different pH and heat temperature conditions commonly observed in food processing. The lecithin type and concentration used to produce liposomes significantly influence the hydrodynamic diameter, polydispersity index, and ζ-potential. In general, we observed the presence of liposomes with diameters ranging from 150 to 221 nm and a polydispersity index of approximately 0.300 when Lipoid S45 was used. The incorporation of microbial carotenoids promoted a significant increase in hydrodynamic diameter and ζ-potential, while carotenoid-loaded liposomes showed a lower polydispersity index. The carotenoid-loaded liposomes submitted to pH 3 presented a visual phase separation, while liposomes submitted at 70 °C for 15 min showed degradation of carotenoids equal to control assay (without treatment). We concluded that it is possible to incorporate microbial carotenoids in food-grade liposomal systems, allowing for further studies aimed at their application as an encapsulating and/or delivery system to be used in aqueous food products.</span></p></div>\",\"PeriodicalId\":48640,\"journal\":{\"name\":\"Food Structure-Netherlands\",\"volume\":\"33 \",\"pages\":\"Article 100282\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Structure-Netherlands\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213329122000314\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Structure-Netherlands","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213329122000314","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 7

摘要

我们证明了用乙醇注射技术从大豆卵磷脂中获得类胡萝卜素脂质体的技术可行性。我们评估了三种不同磷脂酰胆碱含量的卵磷脂类型和粘胶红酵母产生的微生物类胡萝卜素对脂质体性质的影响。通过平均流体动力直径、多分散性指数、ζ-电位以及在食品加工中常见的不同pH和高温条件下的稳定性对脂质体体系进行了表征。用于生产脂质体的卵磷脂类型和浓度显著影响流体动力学直径、多分散性指数和ζ-电位。总的来说,当使用脂质体S45时,我们观察到直径在150至221 nm之间的脂质体的存在,其多分散性指数约为0.300。微生物类胡萝卜素的掺入促进了水动力直径和ζ-电位的显著增加,而类胡萝卜素脂质体的多分散性指数较低。加载类胡萝卜素的脂质体在pH为3时出现了明显的相分离,而在70°C下放置15分钟的脂质体显示了与对照实验相同的类胡萝卜素降解(未经处理)。我们的结论是,在食品级脂质体系统中加入微生物类胡萝卜素是可能的,允许进一步的研究,旨在将其作为一种封装和/或输送系统用于含水食品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Production and stability of food-grade liposomes containing microbial carotenoids from Rhodotorula mucilaginosa

We demonstrated the technical feasibility of obtaining carotenoids-loaded liposomes from soybean lecithins using an ethanol injection technique. We evaluated the influence of three lecithin-types with different phosphatidylcholine content and microbial carotenoids produced by yeast Rhodotorula mucilaginosa on liposome properties. The liposomal systems were characterized by average hydrodynamic diameter, polydispersity index, ζ-potential, and stability under different pH and heat temperature conditions commonly observed in food processing. The lecithin type and concentration used to produce liposomes significantly influence the hydrodynamic diameter, polydispersity index, and ζ-potential. In general, we observed the presence of liposomes with diameters ranging from 150 to 221 nm and a polydispersity index of approximately 0.300 when Lipoid S45 was used. The incorporation of microbial carotenoids promoted a significant increase in hydrodynamic diameter and ζ-potential, while carotenoid-loaded liposomes showed a lower polydispersity index. The carotenoid-loaded liposomes submitted to pH 3 presented a visual phase separation, while liposomes submitted at 70 °C for 15 min showed degradation of carotenoids equal to control assay (without treatment). We concluded that it is possible to incorporate microbial carotenoids in food-grade liposomal systems, allowing for further studies aimed at their application as an encapsulating and/or delivery system to be used in aqueous food products.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food Structure-Netherlands
Food Structure-Netherlands Chemical Engineering-Bioengineering
CiteScore
7.20
自引率
0.00%
发文量
48
期刊介绍: Food Structure is the premier international forum devoted to the publication of high-quality original research on food structure. The focus of this journal is on food structure in the context of its relationship with molecular composition, processing and macroscopic properties (e.g., shelf stability, sensory properties, etc.). Manuscripts that only report qualitative findings and micrographs and that lack sound hypothesis-driven, quantitative structure-function research are not accepted. Significance of the research findings for the food science community and/or industry must also be highlighted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信