{"title":"Orlicz-Sobolev空间中障碍问题的均匀化","authors":"Diego Marcon, J. Rodrigues, R. Teymurazyan","doi":"10.4171/pm/2019","DOIUrl":null,"url":null,"abstract":"We study the homogenization of obstacle problems in Orlicz-Sobolev spaces for a wide class of monotone operators (possibly degenerate or singular) of the $p(\\cdot)$-Laplacian type. Our approach is based on the Lewy-Stampacchia inequalities, which then give access to a compactness argument. We also prove the convergence of the coincidence sets under non-degeneracy conditions.","PeriodicalId":51269,"journal":{"name":"Portugaliae Mathematica","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/pm/2019","citationCount":"4","resultStr":"{\"title\":\"Homogenization of obstacle problems in Orlicz–Sobolev spaces\",\"authors\":\"Diego Marcon, J. Rodrigues, R. Teymurazyan\",\"doi\":\"10.4171/pm/2019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the homogenization of obstacle problems in Orlicz-Sobolev spaces for a wide class of monotone operators (possibly degenerate or singular) of the $p(\\\\cdot)$-Laplacian type. Our approach is based on the Lewy-Stampacchia inequalities, which then give access to a compactness argument. We also prove the convergence of the coincidence sets under non-degeneracy conditions.\",\"PeriodicalId\":51269,\"journal\":{\"name\":\"Portugaliae Mathematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/pm/2019\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Portugaliae Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/pm/2019\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Portugaliae Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/pm/2019","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Homogenization of obstacle problems in Orlicz–Sobolev spaces
We study the homogenization of obstacle problems in Orlicz-Sobolev spaces for a wide class of monotone operators (possibly degenerate or singular) of the $p(\cdot)$-Laplacian type. Our approach is based on the Lewy-Stampacchia inequalities, which then give access to a compactness argument. We also prove the convergence of the coincidence sets under non-degeneracy conditions.
期刊介绍:
Since its foundation in 1937, Portugaliae Mathematica has aimed at publishing high-level research articles in all branches of mathematics. With great efforts by its founders, the journal was able to publish articles by some of the best mathematicians of the time. In 2001 a New Series of Portugaliae Mathematica was started, reaffirming the purpose of maintaining a high-level research journal in mathematics with a wide range scope.