Orlicz-Sobolev空间中障碍问题的均匀化

IF 0.5 4区 数学 Q3 MATHEMATICS
Diego Marcon, J. Rodrigues, R. Teymurazyan
{"title":"Orlicz-Sobolev空间中障碍问题的均匀化","authors":"Diego Marcon, J. Rodrigues, R. Teymurazyan","doi":"10.4171/pm/2019","DOIUrl":null,"url":null,"abstract":"We study the homogenization of obstacle problems in Orlicz-Sobolev spaces for a wide class of monotone operators (possibly degenerate or singular) of the $p(\\cdot)$-Laplacian type. Our approach is based on the Lewy-Stampacchia inequalities, which then give access to a compactness argument. We also prove the convergence of the coincidence sets under non-degeneracy conditions.","PeriodicalId":51269,"journal":{"name":"Portugaliae Mathematica","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/pm/2019","citationCount":"4","resultStr":"{\"title\":\"Homogenization of obstacle problems in Orlicz–Sobolev spaces\",\"authors\":\"Diego Marcon, J. Rodrigues, R. Teymurazyan\",\"doi\":\"10.4171/pm/2019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the homogenization of obstacle problems in Orlicz-Sobolev spaces for a wide class of monotone operators (possibly degenerate or singular) of the $p(\\\\cdot)$-Laplacian type. Our approach is based on the Lewy-Stampacchia inequalities, which then give access to a compactness argument. We also prove the convergence of the coincidence sets under non-degeneracy conditions.\",\"PeriodicalId\":51269,\"journal\":{\"name\":\"Portugaliae Mathematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/pm/2019\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Portugaliae Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/pm/2019\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Portugaliae Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/pm/2019","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

我们研究了$p(\cdot)$-Laplacian型的一类广义单调算子(可能退化或奇异)在Orlicz-Sobolev空间中障碍问题的同构性。我们的方法是基于Lewy-Stampacchia不等式,然后给出了紧致性论点。我们还证明了在非退化条件下重合集的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homogenization of obstacle problems in Orlicz–Sobolev spaces
We study the homogenization of obstacle problems in Orlicz-Sobolev spaces for a wide class of monotone operators (possibly degenerate or singular) of the $p(\cdot)$-Laplacian type. Our approach is based on the Lewy-Stampacchia inequalities, which then give access to a compactness argument. We also prove the convergence of the coincidence sets under non-degeneracy conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Portugaliae Mathematica
Portugaliae Mathematica MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.90
自引率
12.50%
发文量
23
审稿时长
>12 weeks
期刊介绍: Since its foundation in 1937, Portugaliae Mathematica has aimed at publishing high-level research articles in all branches of mathematics. With great efforts by its founders, the journal was able to publish articles by some of the best mathematicians of the time. In 2001 a New Series of Portugaliae Mathematica was started, reaffirming the purpose of maintaining a high-level research journal in mathematics with a wide range scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信