{"title":"空间数据缺失的一种解:公共相关效应估计量","authors":"M. Beenstock, D. Felsenstein","doi":"10.1177/0160017620959132","DOIUrl":null,"url":null,"abstract":"Informed regional policy needs good regional data. As regional data series for key economic variables are generally absent whereas national-level time series data for the same variables are ubiquitous, we suggest an approach that leverages this advantage. We hypothesize the existence of a pervasive “common factor” represented by the national time series that affects regions differentially. We provide an empirical illustration in which national FDI is used in place of panel data for FDI, which are absent. The proposed methodology is tested empirically with respect to the determinants of regional demand for housing. We use a quasi-experimental approach to compare the results of a “common correlated effects” (CCE) estimator with a benchmark case when absent regional data are omitted. Using three common factors relating to national population, income and housing stock, we find mixed support for the common correlated effects hypothesis. We conclude by discussing how our experimental design may serve as a methodological prototype for further tests of CCE as a solution to the absent spatial data problem.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0160017620959132","citationCount":"3","resultStr":"{\"title\":\"A Solution for Absent Spatial Data: The Common Correlated Effects Estimator\",\"authors\":\"M. Beenstock, D. Felsenstein\",\"doi\":\"10.1177/0160017620959132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Informed regional policy needs good regional data. As regional data series for key economic variables are generally absent whereas national-level time series data for the same variables are ubiquitous, we suggest an approach that leverages this advantage. We hypothesize the existence of a pervasive “common factor” represented by the national time series that affects regions differentially. We provide an empirical illustration in which national FDI is used in place of panel data for FDI, which are absent. The proposed methodology is tested empirically with respect to the determinants of regional demand for housing. We use a quasi-experimental approach to compare the results of a “common correlated effects” (CCE) estimator with a benchmark case when absent regional data are omitted. Using three common factors relating to national population, income and housing stock, we find mixed support for the common correlated effects hypothesis. We conclude by discussing how our experimental design may serve as a methodological prototype for further tests of CCE as a solution to the absent spatial data problem.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/0160017620959132\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1177/0160017620959132\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1177/0160017620959132","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Solution for Absent Spatial Data: The Common Correlated Effects Estimator
Informed regional policy needs good regional data. As regional data series for key economic variables are generally absent whereas national-level time series data for the same variables are ubiquitous, we suggest an approach that leverages this advantage. We hypothesize the existence of a pervasive “common factor” represented by the national time series that affects regions differentially. We provide an empirical illustration in which national FDI is used in place of panel data for FDI, which are absent. The proposed methodology is tested empirically with respect to the determinants of regional demand for housing. We use a quasi-experimental approach to compare the results of a “common correlated effects” (CCE) estimator with a benchmark case when absent regional data are omitted. Using three common factors relating to national population, income and housing stock, we find mixed support for the common correlated effects hypothesis. We conclude by discussing how our experimental design may serve as a methodological prototype for further tests of CCE as a solution to the absent spatial data problem.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.