一维平流方程Lax-Friedrichs格式的计算不确定性及最优网格尺寸和时间步长

IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Jing Cao , Jianping Li , Yanjie Li
{"title":"一维平流方程Lax-Friedrichs格式的计算不确定性及最优网格尺寸和时间步长","authors":"Jing Cao ,&nbsp;Jianping Li ,&nbsp;Yanjie Li","doi":"10.1016/j.aosl.2023.100331","DOIUrl":null,"url":null,"abstract":"<div><p>This paper examines truncation and round-off errors in the numerical solution of the 1D advection equation with the Lax–Friedrichs scheme, and accumulation of the errors as they are propagated to high temporal layers. The authors obtain a new theoretical approximation formula for the upper bound of the total error of the numerical solution, as well as theoretical formulae for the optimal grid size and time step. The reliability of the obtained formulae is demonstrated with numerical experimental examples. Next, the ratio of the optimal time steps under two different machine precisions is found to satisfy a universal relation that depends only on the machine precision involved. Finally, theoretical verification suggests that this problem satisfies the computational uncertainty principle when the grid ratio is fixed, demonstrating the inevitable existence of an optimal time step size under a finite machine precision.</p><p>摘要</p><p>本文对于应用Lax- Friedrichs 格式数值求解一维平流方程, 研究数值求解过程中产生的截断误差与舍入误差, 以及两种误差逐层向高时间层传播的累积, 得到新的数值解总误差上界的理论近似公式, 以及最优格距和最优时间步长的理论公式. 通过数值算例验证了所得公式的可靠性. 然后, 发现了两种不同机器精度下最优时间步长之比满足的一个仅与机器精度有关的普适关系. 最后, 理论验证了在网格比固定的情况下, 此问题满足数值计算的不确定性原理, 以及在机器有限精度下最优时间步长的必然存在.</p></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"16 3","pages":"Article 100331"},"PeriodicalIF":2.3000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational uncertainty and optimal grid size and time step of the Lax–Friedrichs scheme for the 1D advection equation\",\"authors\":\"Jing Cao ,&nbsp;Jianping Li ,&nbsp;Yanjie Li\",\"doi\":\"10.1016/j.aosl.2023.100331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper examines truncation and round-off errors in the numerical solution of the 1D advection equation with the Lax–Friedrichs scheme, and accumulation of the errors as they are propagated to high temporal layers. The authors obtain a new theoretical approximation formula for the upper bound of the total error of the numerical solution, as well as theoretical formulae for the optimal grid size and time step. The reliability of the obtained formulae is demonstrated with numerical experimental examples. Next, the ratio of the optimal time steps under two different machine precisions is found to satisfy a universal relation that depends only on the machine precision involved. Finally, theoretical verification suggests that this problem satisfies the computational uncertainty principle when the grid ratio is fixed, demonstrating the inevitable existence of an optimal time step size under a finite machine precision.</p><p>摘要</p><p>本文对于应用Lax- Friedrichs 格式数值求解一维平流方程, 研究数值求解过程中产生的截断误差与舍入误差, 以及两种误差逐层向高时间层传播的累积, 得到新的数值解总误差上界的理论近似公式, 以及最优格距和最优时间步长的理论公式. 通过数值算例验证了所得公式的可靠性. 然后, 发现了两种不同机器精度下最优时间步长之比满足的一个仅与机器精度有关的普适关系. 最后, 理论验证了在网格比固定的情况下, 此问题满足数值计算的不确定性原理, 以及在机器有限精度下最优时间步长的必然存在.</p></div>\",\"PeriodicalId\":47210,\"journal\":{\"name\":\"Atmospheric and Oceanic Science Letters\",\"volume\":\"16 3\",\"pages\":\"Article 100331\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric and Oceanic Science Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674283423000065\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674283423000065","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了用Lax-Friedrichs格式的一维平流方程数值解中的截断和舍入误差,以及误差在传播到高时间层时的累积。得到了数值解总误差上界的新的理论近似公式,以及最优网格尺寸和时间步长的理论公式。通过数值算例验证了所得公式的可靠性。其次,找出两种不同机器精度下的最优时间步长之比,以满足只依赖于所涉及的机器精度的通用关系。最后,理论验证表明,当网格比例固定时,该问题满足计算不确定性原理,说明在有限机器精度下,必然存在最优时间步长。摘要本文对于应用宽松——弗里德里希·格式数值求解一维平流方程,研究数值求解过程中产生的截断误差与舍入误差,以及两种误差逐层向高时间层传播的累积,得到新的数值解总误差上界的理论近似公式,以及最优格距和最优时间步长的理论公式。通过数值算例验证了所得公式的可靠性. 然后, 发现了两种不同机器精度下最优时间步长之比满足的一个仅与机器精度有关的普适关系. 最后, 理论验证了在网格比固定的情况下, 此问题满足数值计算的不确定性原理, 以及在机器有限精度下最优时间步长的必然存在.
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Computational uncertainty and optimal grid size and time step of the Lax–Friedrichs scheme for the 1D advection equation

Computational uncertainty and optimal grid size and time step of the Lax–Friedrichs scheme for the 1D advection equation

This paper examines truncation and round-off errors in the numerical solution of the 1D advection equation with the Lax–Friedrichs scheme, and accumulation of the errors as they are propagated to high temporal layers. The authors obtain a new theoretical approximation formula for the upper bound of the total error of the numerical solution, as well as theoretical formulae for the optimal grid size and time step. The reliability of the obtained formulae is demonstrated with numerical experimental examples. Next, the ratio of the optimal time steps under two different machine precisions is found to satisfy a universal relation that depends only on the machine precision involved. Finally, theoretical verification suggests that this problem satisfies the computational uncertainty principle when the grid ratio is fixed, demonstrating the inevitable existence of an optimal time step size under a finite machine precision.

摘要

本文对于应用Lax- Friedrichs 格式数值求解一维平流方程, 研究数值求解过程中产生的截断误差与舍入误差, 以及两种误差逐层向高时间层传播的累积, 得到新的数值解总误差上界的理论近似公式, 以及最优格距和最优时间步长的理论公式. 通过数值算例验证了所得公式的可靠性. 然后, 发现了两种不同机器精度下最优时间步长之比满足的一个仅与机器精度有关的普适关系. 最后, 理论验证了在网格比固定的情况下, 此问题满足数值计算的不确定性原理, 以及在机器有限精度下最优时间步长的必然存在.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric and Oceanic Science Letters
Atmospheric and Oceanic Science Letters METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.20
自引率
8.70%
发文量
925
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信