基于双超宽带(UWB)雷达的睡眠姿势识别系统:迈向无处不在的睡眠监测

Q1 Medicine
Derek Ka-Hei Lai , Li-Wen Zha , Tommy Yau-Nam Leung , Andy Yiu-Chau Tam , Bryan Pak-Hei So , Hyo-Jung Lim , Daphne Sze Ki Cheung , Duo Wai-Chi Wong , James Chung-Wai Cheung
{"title":"基于双超宽带(UWB)雷达的睡眠姿势识别系统:迈向无处不在的睡眠监测","authors":"Derek Ka-Hei Lai ,&nbsp;Li-Wen Zha ,&nbsp;Tommy Yau-Nam Leung ,&nbsp;Andy Yiu-Chau Tam ,&nbsp;Bryan Pak-Hei So ,&nbsp;Hyo-Jung Lim ,&nbsp;Daphne Sze Ki Cheung ,&nbsp;Duo Wai-Chi Wong ,&nbsp;James Chung-Wai Cheung","doi":"10.1016/j.engreg.2022.11.003","DOIUrl":null,"url":null,"abstract":"<div><p>Sleep posture monitoring is an essential assessment for obstructive sleep apnea (OSA) patients. The objective of this study is to develop a machine learning-based sleep posture recognition system using a dual ultra-wideband radar system. We collected radiofrequency data from two radars positioned over and at the side of the bed for 16 patients performing four sleep postures (supine, left and right lateral, and prone). We proposed and evaluated deep learning approaches that streamlined feature extraction and classification, and the traditional machine learning approaches that involved different combinations of feature extractors and classifiers. Our results showed that the dual radar system performed better than either single radar. Predetermined statistical features with random forest classifier yielded the best accuracy (0.887), which could be further improved via an ablation study (0.938). Deep learning approach using transformer yielded accuracy of 0.713.</p></div>","PeriodicalId":72919,"journal":{"name":"Engineered regeneration","volume":"4 1","pages":"Pages 36-43"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Dual ultra-wideband (UWB) radar-based sleep posture recognition system: Towards ubiquitous sleep monitoring\",\"authors\":\"Derek Ka-Hei Lai ,&nbsp;Li-Wen Zha ,&nbsp;Tommy Yau-Nam Leung ,&nbsp;Andy Yiu-Chau Tam ,&nbsp;Bryan Pak-Hei So ,&nbsp;Hyo-Jung Lim ,&nbsp;Daphne Sze Ki Cheung ,&nbsp;Duo Wai-Chi Wong ,&nbsp;James Chung-Wai Cheung\",\"doi\":\"10.1016/j.engreg.2022.11.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sleep posture monitoring is an essential assessment for obstructive sleep apnea (OSA) patients. The objective of this study is to develop a machine learning-based sleep posture recognition system using a dual ultra-wideband radar system. We collected radiofrequency data from two radars positioned over and at the side of the bed for 16 patients performing four sleep postures (supine, left and right lateral, and prone). We proposed and evaluated deep learning approaches that streamlined feature extraction and classification, and the traditional machine learning approaches that involved different combinations of feature extractors and classifiers. Our results showed that the dual radar system performed better than either single radar. Predetermined statistical features with random forest classifier yielded the best accuracy (0.887), which could be further improved via an ablation study (0.938). Deep learning approach using transformer yielded accuracy of 0.713.</p></div>\",\"PeriodicalId\":72919,\"journal\":{\"name\":\"Engineered regeneration\",\"volume\":\"4 1\",\"pages\":\"Pages 36-43\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineered regeneration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666138122000706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineered regeneration","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666138122000706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 8

摘要

睡眠姿势监测是阻塞性睡眠呼吸暂停(OSA)患者的重要评估指标。本研究的目的是利用双超宽带雷达系统开发一种基于机器学习的睡眠姿势识别系统。我们收集了16位采用四种睡姿(仰卧、左右侧卧和俯卧)的患者在床上和床边的两个雷达的射频数据。我们提出并评估了简化特征提取和分类的深度学习方法,以及涉及特征提取器和分类器不同组合的传统机器学习方法。结果表明,双雷达系统的性能优于单雷达系统。随机森林分类器的预定统计特征获得了最好的准确率(0.887),通过消融研究可以进一步提高准确率(0.938)。使用变压器的深度学习方法的准确率为0.713。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual ultra-wideband (UWB) radar-based sleep posture recognition system: Towards ubiquitous sleep monitoring

Sleep posture monitoring is an essential assessment for obstructive sleep apnea (OSA) patients. The objective of this study is to develop a machine learning-based sleep posture recognition system using a dual ultra-wideband radar system. We collected radiofrequency data from two radars positioned over and at the side of the bed for 16 patients performing four sleep postures (supine, left and right lateral, and prone). We proposed and evaluated deep learning approaches that streamlined feature extraction and classification, and the traditional machine learning approaches that involved different combinations of feature extractors and classifiers. Our results showed that the dual radar system performed better than either single radar. Predetermined statistical features with random forest classifier yielded the best accuracy (0.887), which could be further improved via an ablation study (0.938). Deep learning approach using transformer yielded accuracy of 0.713.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineered regeneration
Engineered regeneration Biomaterials, Medicine and Dentistry (General), Biotechnology, Biomedical Engineering
CiteScore
22.90
自引率
0.00%
发文量
0
审稿时长
33 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信