粉煤灰掺PPC和OPC混凝土加速配合法的经验方程

P. Ojha, Suresh Kumar, Manish K. Mandre, P. Mittal, Brijesh Singh, Arora V V
{"title":"粉煤灰掺PPC和OPC混凝土加速配合法的经验方程","authors":"P. Ojha, Suresh Kumar, Manish K. Mandre, P. Mittal, Brijesh Singh, Arora V V","doi":"10.34118/jbms.v8i2.1487","DOIUrl":null,"url":null,"abstract":"Assessment of 28 days strength from accelerated strength (1 day) can be extremely helpful. Early prediction of 28 days compressive strength is required basically for two purposes. First, to finalize the concrete mix proportions in the laboratory and secondly, for quality control purpose during construction. Through this concept designers can easily identify the uncalculated errors during mix design or variations in materials and exposure conditions etc. and take necessary correction and modification measures to attain the desired strengths at 28 days. As per IS: 9013 methodology to predict the 28 days strength of concrete from accelerated cured strength are indicated only for normal/control concrete. In the past few year focus has shifted from Ordinary Portland Cement (OPC) to Portland Pozzolana Cement (PPC). Fly ash is also being used widely at sites as replacement of OPC. However, there is no such guideline available by which the assessment of 28 days strength of Indian fly ash concrete can be made from accelerated strength tests.  In the present study an attempt has been made to predict the expected 28 days compressive strength of concrete having PPC or OPC with fly ash using accelerated temperature regime methods. The experimental study includes the use of 2 brands of PPC, 5 brands of OPC and 2 sources of fly ash for replacement of OPC ranging from 20% to 45 %. Two temperature regimes 900C and 820C were used for accelerated curing. The samples were cured for 7.5 hours and 20hours respectively in each regime for expected 28 day compressive strength. The mathematical equations to estimate the 28 days compressive strength of concrete, cured at 900C for 7.5 hours for mixes having PPC, OPC mixed with fly ash 20% to 35% is fexp28 = 1.223 facs +2.024. The mathematical equations to estimate the 28 days compressive strength of concrete, cured at 900C for 7.5 hours for mixes having PPC, OPC mixed with fly ash more than 35% and up to 45% is fexp28 = 0.993 facs + 6.044.","PeriodicalId":33130,"journal":{"name":"Journal of Building Materials and Structures","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Empirical Equation for Concrete Made With PPC or OPC with Fly Ash by Accelerated Mix Design Method\",\"authors\":\"P. Ojha, Suresh Kumar, Manish K. Mandre, P. Mittal, Brijesh Singh, Arora V V\",\"doi\":\"10.34118/jbms.v8i2.1487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assessment of 28 days strength from accelerated strength (1 day) can be extremely helpful. Early prediction of 28 days compressive strength is required basically for two purposes. First, to finalize the concrete mix proportions in the laboratory and secondly, for quality control purpose during construction. Through this concept designers can easily identify the uncalculated errors during mix design or variations in materials and exposure conditions etc. and take necessary correction and modification measures to attain the desired strengths at 28 days. As per IS: 9013 methodology to predict the 28 days strength of concrete from accelerated cured strength are indicated only for normal/control concrete. In the past few year focus has shifted from Ordinary Portland Cement (OPC) to Portland Pozzolana Cement (PPC). Fly ash is also being used widely at sites as replacement of OPC. However, there is no such guideline available by which the assessment of 28 days strength of Indian fly ash concrete can be made from accelerated strength tests.  In the present study an attempt has been made to predict the expected 28 days compressive strength of concrete having PPC or OPC with fly ash using accelerated temperature regime methods. The experimental study includes the use of 2 brands of PPC, 5 brands of OPC and 2 sources of fly ash for replacement of OPC ranging from 20% to 45 %. Two temperature regimes 900C and 820C were used for accelerated curing. The samples were cured for 7.5 hours and 20hours respectively in each regime for expected 28 day compressive strength. The mathematical equations to estimate the 28 days compressive strength of concrete, cured at 900C for 7.5 hours for mixes having PPC, OPC mixed with fly ash 20% to 35% is fexp28 = 1.223 facs +2.024. The mathematical equations to estimate the 28 days compressive strength of concrete, cured at 900C for 7.5 hours for mixes having PPC, OPC mixed with fly ash more than 35% and up to 45% is fexp28 = 0.993 facs + 6.044.\",\"PeriodicalId\":33130,\"journal\":{\"name\":\"Journal of Building Materials and Structures\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Building Materials and Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34118/jbms.v8i2.1487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Building Materials and Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34118/jbms.v8i2.1487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从加速强度(1天)中评估28天的强度可能非常有帮助。早期预测28天抗压强度基本上有两个目的。首先,在实验室中确定混凝土配合比,其次,在施工过程中进行质量控制。通过这一概念,设计者可以很容易地识别混合料设计过程中的未计算误差或材料和暴露条件等的变化,并采取必要的校正和修改措施,以在28天时达到所需的强度。根据IS:9013,根据加速养护强度预测混凝土28天强度的方法仅适用于正常/对照混凝土。在过去的几年里,重点已经从普通硅酸盐水泥(OPC)转移到了波特兰火山灰水泥(PPC)。粉煤灰作为OPC的替代品也在现场广泛使用。然而,没有这样的指南可以通过加速强度测试来评估印度粉煤灰混凝土的28天强度。在本研究中,已经尝试使用加速温度状态方法来预测具有PPC或OPC的粉煤灰混凝土的预期28天抗压强度。实验研究包括使用2个品牌的PPC、5个品牌的OPC和2种来源的粉煤灰代替20%至45%的OPC。使用两个温度范围900C和820C进行加速固化。对于预期的28天抗压强度,样品在每个方案中分别固化7.5小时和20小时。估算混凝土28天抗压强度的数学方程为fexp28=1.223 facs+2.024,对于具有PPC、OPC和20%至35%的粉煤灰混合料,在900℃下养护7.5小时。估算混凝土28天抗压强度的数学方程为fexp28=0.993 facs+6.044,在900℃下养护7.5小时,其中PPC、OPC与粉煤灰的混合料的抗压强度大于35%,最高可达45%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Empirical Equation for Concrete Made With PPC or OPC with Fly Ash by Accelerated Mix Design Method
Assessment of 28 days strength from accelerated strength (1 day) can be extremely helpful. Early prediction of 28 days compressive strength is required basically for two purposes. First, to finalize the concrete mix proportions in the laboratory and secondly, for quality control purpose during construction. Through this concept designers can easily identify the uncalculated errors during mix design or variations in materials and exposure conditions etc. and take necessary correction and modification measures to attain the desired strengths at 28 days. As per IS: 9013 methodology to predict the 28 days strength of concrete from accelerated cured strength are indicated only for normal/control concrete. In the past few year focus has shifted from Ordinary Portland Cement (OPC) to Portland Pozzolana Cement (PPC). Fly ash is also being used widely at sites as replacement of OPC. However, there is no such guideline available by which the assessment of 28 days strength of Indian fly ash concrete can be made from accelerated strength tests.  In the present study an attempt has been made to predict the expected 28 days compressive strength of concrete having PPC or OPC with fly ash using accelerated temperature regime methods. The experimental study includes the use of 2 brands of PPC, 5 brands of OPC and 2 sources of fly ash for replacement of OPC ranging from 20% to 45 %. Two temperature regimes 900C and 820C were used for accelerated curing. The samples were cured for 7.5 hours and 20hours respectively in each regime for expected 28 day compressive strength. The mathematical equations to estimate the 28 days compressive strength of concrete, cured at 900C for 7.5 hours for mixes having PPC, OPC mixed with fly ash 20% to 35% is fexp28 = 1.223 facs +2.024. The mathematical equations to estimate the 28 days compressive strength of concrete, cured at 900C for 7.5 hours for mixes having PPC, OPC mixed with fly ash more than 35% and up to 45% is fexp28 = 0.993 facs + 6.044.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
7
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信