方法在单颗粒水平上分析细胞外囊泡

IF 4.7 Q2 NANOSCIENCE & NANOTECHNOLOGY
Yongmin Kwon, Jaesung Park
{"title":"方法在单颗粒水平上分析细胞外囊泡","authors":"Yongmin Kwon,&nbsp;Jaesung Park","doi":"10.1186/s40486-022-00156-5","DOIUrl":null,"url":null,"abstract":"<div><p>Extracellular vesicles (EVs) are nano-sized vesicles derived from cells that transport biomaterials between cells through biofluids. Due to their biological role and components, they are considered as potential drug carriers and for diagnostic applications. Today's advanced nanotechnology enables single-particle-level analysis that was difficult in the past due to its small size below the diffraction limit. Single EV analysis reveals the heterogeneity of EVs, which could not be discovered by various ensemble analysis methods. Understanding the characteristics of single EVs enables more advanced pathological and biological researches. This review focuses on the advanced techniques employed for EV analysis at the single particle level and describes the principles of each technique.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"10 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-022-00156-5","citationCount":"5","resultStr":"{\"title\":\"Methods to analyze extracellular vesicles at single particle level\",\"authors\":\"Yongmin Kwon,&nbsp;Jaesung Park\",\"doi\":\"10.1186/s40486-022-00156-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Extracellular vesicles (EVs) are nano-sized vesicles derived from cells that transport biomaterials between cells through biofluids. Due to their biological role and components, they are considered as potential drug carriers and for diagnostic applications. Today's advanced nanotechnology enables single-particle-level analysis that was difficult in the past due to its small size below the diffraction limit. Single EV analysis reveals the heterogeneity of EVs, which could not be discovered by various ensemble analysis methods. Understanding the characteristics of single EVs enables more advanced pathological and biological researches. This review focuses on the advanced techniques employed for EV analysis at the single particle level and describes the principles of each technique.</p></div>\",\"PeriodicalId\":704,\"journal\":{\"name\":\"Micro and Nano Systems Letters\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-022-00156-5\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nano Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40486-022-00156-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40486-022-00156-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 5

摘要

细胞外囊泡(EVs)是来源于细胞的纳米级囊泡,通过生物流体在细胞间运输生物材料。由于它们的生物学作用和成分,它们被认为是潜在的药物载体和诊断应用。当今先进的纳米技术使单颗粒级分析成为可能,过去由于其小于衍射极限的小尺寸而难以进行分析。单EV分析揭示了EV的异质性,这是各种集成分析方法无法发现的。了解单个ev的特征有助于更深入的病理和生物学研究。本文重点介绍了单颗粒水平EV分析的先进技术,并介绍了每种技术的原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Methods to analyze extracellular vesicles at single particle level

Extracellular vesicles (EVs) are nano-sized vesicles derived from cells that transport biomaterials between cells through biofluids. Due to their biological role and components, they are considered as potential drug carriers and for diagnostic applications. Today's advanced nanotechnology enables single-particle-level analysis that was difficult in the past due to its small size below the diffraction limit. Single EV analysis reveals the heterogeneity of EVs, which could not be discovered by various ensemble analysis methods. Understanding the characteristics of single EVs enables more advanced pathological and biological researches. This review focuses on the advanced techniques employed for EV analysis at the single particle level and describes the principles of each technique.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micro and Nano Systems Letters
Micro and Nano Systems Letters Engineering-Biomedical Engineering
CiteScore
10.60
自引率
5.60%
发文量
16
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信