{"title":"具有三陷波特性的平面EBG加载超宽带单极天线","authors":"V. Kollipara, Samineni Peddakrishna, J. Kumar","doi":"10.46604/ijeti.2021.8084","DOIUrl":null,"url":null,"abstract":"A triple band-notched ultra-wideband (UWB) monopole antenna using a planar electromagnetic bandgap (EBG) design is proposed. The EBG unit cell composed by an Archimedean spiral and inter-digital capacitance demonstrates the notch frequencies. The antenna with EBG cells near the feed line occupies only 30 × 36 mm2 with triple band-rejection characteristics. The three notched bands at 4.2 GHz, 5.2 GHz, and 9.1 GHz can be used in C-band satellite downlink, wireless local area network (WLAN), and X-band radio location for naval radar or military required applications. In addition, the proposed design is flexible to tune different notched bands by altering the EBG dimensions. The parametric analysis is studied in details after placing the EBG unit cells near the feed line to show the coupling effect. The input impedance and surface current distribution analysis are also analyzed to understand the effect of EBG at notch frequencies. The proposed design prototype is fabricated and characterized. A fairly considerable agreement is observed between simulated and measured results.","PeriodicalId":43808,"journal":{"name":"International Journal of Engineering and Technology Innovation","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Planar EBG Loaded UWB Monopole Antenna with Triple Notch Characteristics\",\"authors\":\"V. Kollipara, Samineni Peddakrishna, J. Kumar\",\"doi\":\"10.46604/ijeti.2021.8084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A triple band-notched ultra-wideband (UWB) monopole antenna using a planar electromagnetic bandgap (EBG) design is proposed. The EBG unit cell composed by an Archimedean spiral and inter-digital capacitance demonstrates the notch frequencies. The antenna with EBG cells near the feed line occupies only 30 × 36 mm2 with triple band-rejection characteristics. The three notched bands at 4.2 GHz, 5.2 GHz, and 9.1 GHz can be used in C-band satellite downlink, wireless local area network (WLAN), and X-band radio location for naval radar or military required applications. In addition, the proposed design is flexible to tune different notched bands by altering the EBG dimensions. The parametric analysis is studied in details after placing the EBG unit cells near the feed line to show the coupling effect. The input impedance and surface current distribution analysis are also analyzed to understand the effect of EBG at notch frequencies. The proposed design prototype is fabricated and characterized. A fairly considerable agreement is observed between simulated and measured results.\",\"PeriodicalId\":43808,\"journal\":{\"name\":\"International Journal of Engineering and Technology Innovation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering and Technology Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46604/ijeti.2021.8084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/ijeti.2021.8084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Planar EBG Loaded UWB Monopole Antenna with Triple Notch Characteristics
A triple band-notched ultra-wideband (UWB) monopole antenna using a planar electromagnetic bandgap (EBG) design is proposed. The EBG unit cell composed by an Archimedean spiral and inter-digital capacitance demonstrates the notch frequencies. The antenna with EBG cells near the feed line occupies only 30 × 36 mm2 with triple band-rejection characteristics. The three notched bands at 4.2 GHz, 5.2 GHz, and 9.1 GHz can be used in C-band satellite downlink, wireless local area network (WLAN), and X-band radio location for naval radar or military required applications. In addition, the proposed design is flexible to tune different notched bands by altering the EBG dimensions. The parametric analysis is studied in details after placing the EBG unit cells near the feed line to show the coupling effect. The input impedance and surface current distribution analysis are also analyzed to understand the effect of EBG at notch frequencies. The proposed design prototype is fabricated and characterized. A fairly considerable agreement is observed between simulated and measured results.
期刊介绍:
The IJETI journal focus on the field of engineering and technology Innovation. And it publishes original papers including but not limited to the following fields: Automation Engineering Civil Engineering Control Engineering Electric Engineering Electronic Engineering Green Technology Information Engineering Mechanical Engineering Material Engineering Mechatronics and Robotics Engineering Nanotechnology Optic Engineering Sport Science and Technology Innovation Management Other Engineering and Technology Related Topics.