用免疫信息学方法设计一种新的针对鱼类哈维氏弧菌感染的信使核糖核酸疫苗

Sk Injamamul Islam, Moslema Jahan Mou, Saloa Sanjida, Muhammad Tariq, Saad Nasir, Sarower Mahfuj
{"title":"用免疫信息学方法设计一种新的针对鱼类哈维氏弧菌感染的信使核糖核酸疫苗","authors":"Sk Injamamul Islam, Moslema Jahan Mou, Saloa Sanjida, Muhammad Tariq, Saad Nasir, Sarower Mahfuj","doi":"10.5808/gi.21065","DOIUrl":null,"url":null,"abstract":"Vibrio harveyi belongs to the family Vibrionaceae of class Gammaproteobacteria. Around 12 Vibrio species can cause gastroenteritis (gastrointestinal illness) in humans. A large number of bacterial particles can be found in the infected cells, which may cause death. Despite these devastating complications, there is still no cure or vaccine for the bacteria. As a result, we used an immunoinformatics approach to develop a multi-epitope vaccine against the most pathogenic hemolysin gene of V. harveyi. The immunodominant T- and B-cell epitopes were identified using the hemolysin protein. We developed a vaccine employing three possible epitopes: cytotoxic T-lymphocytes, helper T-lymphocytes, and linear B-lymphocyte epitopes, after thorough testing. The vaccine was developed to be antigenic, immunogenic, and non-allergenic, as well as have a better solubility. Molecular dynamics simulation revealed significant structural stiffness and binding stability. In addition, the immunological simulation generated by computers revealed that the vaccination might elicit immune reactions Escherichia coli K12 as a model, codon optimization yielded ideal GC content and a higher codon adaptation index value, which was then included in the cloning vector pET2+ (a). Altogether, our experiment implies that the proposed peptide vaccine might be a good option for vibriosis prophylaxis.","PeriodicalId":94288,"journal":{"name":"Genomics & informatics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Designing a novel mRNA vaccine against Vibrio harveyi infection in fish: an immunoinformatics approach\",\"authors\":\"Sk Injamamul Islam, Moslema Jahan Mou, Saloa Sanjida, Muhammad Tariq, Saad Nasir, Sarower Mahfuj\",\"doi\":\"10.5808/gi.21065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vibrio harveyi belongs to the family Vibrionaceae of class Gammaproteobacteria. Around 12 Vibrio species can cause gastroenteritis (gastrointestinal illness) in humans. A large number of bacterial particles can be found in the infected cells, which may cause death. Despite these devastating complications, there is still no cure or vaccine for the bacteria. As a result, we used an immunoinformatics approach to develop a multi-epitope vaccine against the most pathogenic hemolysin gene of V. harveyi. The immunodominant T- and B-cell epitopes were identified using the hemolysin protein. We developed a vaccine employing three possible epitopes: cytotoxic T-lymphocytes, helper T-lymphocytes, and linear B-lymphocyte epitopes, after thorough testing. The vaccine was developed to be antigenic, immunogenic, and non-allergenic, as well as have a better solubility. Molecular dynamics simulation revealed significant structural stiffness and binding stability. In addition, the immunological simulation generated by computers revealed that the vaccination might elicit immune reactions Escherichia coli K12 as a model, codon optimization yielded ideal GC content and a higher codon adaptation index value, which was then included in the cloning vector pET2+ (a). Altogether, our experiment implies that the proposed peptide vaccine might be a good option for vibriosis prophylaxis.\",\"PeriodicalId\":94288,\"journal\":{\"name\":\"Genomics & informatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics & informatics\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.5808/gi.21065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics & informatics","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.5808/gi.21065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

harveyi弧菌属于伽马变形菌纲弧菌科。大约12种弧菌会导致人类肠胃炎(胃肠道疾病)。在受感染的细胞中可以发现大量的细菌颗粒,这些颗粒可能会导致死亡。尽管有这些毁灭性的并发症,但仍然没有治愈这种细菌的方法或疫苗。因此,我们使用免疫信息学方法开发了一种针对哈维氏弧菌致病性最强的溶血素基因的多表位疫苗。使用溶血素蛋白鉴定免疫显性T细胞和B细胞表位。经过彻底测试,我们开发了一种使用三种可能表位的疫苗:细胞毒性T淋巴细胞、辅助性T淋巴细胞和线性B淋巴细胞表位。该疫苗具有抗原性、免疫原性和非致敏性,并具有更好的溶解性。分子动力学模拟显示了显著的结构刚度和结合稳定性。此外,计算机免疫模拟显示,疫苗接种可能引发免疫反应,以大肠杆菌K12为模型,密码子优化产生了理想的GC含量和较高的密码子适应指数值,并将其纳入克隆载体pET2+(a)中。总之,我们的实验表明,所提出的肽疫苗可能是预防弧菌病的一个很好的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing a novel mRNA vaccine against Vibrio harveyi infection in fish: an immunoinformatics approach
Vibrio harveyi belongs to the family Vibrionaceae of class Gammaproteobacteria. Around 12 Vibrio species can cause gastroenteritis (gastrointestinal illness) in humans. A large number of bacterial particles can be found in the infected cells, which may cause death. Despite these devastating complications, there is still no cure or vaccine for the bacteria. As a result, we used an immunoinformatics approach to develop a multi-epitope vaccine against the most pathogenic hemolysin gene of V. harveyi. The immunodominant T- and B-cell epitopes were identified using the hemolysin protein. We developed a vaccine employing three possible epitopes: cytotoxic T-lymphocytes, helper T-lymphocytes, and linear B-lymphocyte epitopes, after thorough testing. The vaccine was developed to be antigenic, immunogenic, and non-allergenic, as well as have a better solubility. Molecular dynamics simulation revealed significant structural stiffness and binding stability. In addition, the immunological simulation generated by computers revealed that the vaccination might elicit immune reactions Escherichia coli K12 as a model, codon optimization yielded ideal GC content and a higher codon adaptation index value, which was then included in the cloning vector pET2+ (a). Altogether, our experiment implies that the proposed peptide vaccine might be a good option for vibriosis prophylaxis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信