{"title":"与超临界哈密顿干草叉分岔相关的0:1共振分岔","authors":"Xing Zhou","doi":"10.1080/14689367.2023.2194521","DOIUrl":null,"url":null,"abstract":"We consider the non-semisimple 0:1 resonance (i.e. the unperturbed equilibrium has two purely imaginary eigenvalues ( and ) and a non-semisimple double-zero one) Hamiltonian bifurcation with one distinguished parameter, which corresponds to the supercritical Hamiltonian pitchfork bifurcation. Based on BCKV singularity theory established by [H.W. Broer, S. -N. Chow, Y. Kim, and G. Vegter, A normally elliptic Hamiltonian bifurcation, Z. Angew. Math. Phys. 44 (3) (1993), pp. 389–432], this bifurcation essentially triggered by the reversible universal unfolding with respect to BCKV-restricted morphisms of the planar non-semisimple singularity (the is regarded as distinguished parameter with respect to the external parameter λ). We first give the plane bifurcation diagram of the integrable Hamiltonian on each level of integral in detail, which is related to the usual supercritical Hamiltonian pitchfork bifurcation. Then, we use the -symmetry generated by the additional pair of imaginary eigenvalues to reconstruct the above plane bifurcation phenomenon caused by the zero eigenvalue pair into the case with two degrees of freedom. Finally, we prove the persistence of typical bifurcation scenarios (e.g. 2-dimensional invariant tori and the symmetric homoclinic orbit) under the small Hamiltonian perturbations, as proposed by [H.W. Broer, S. -N. Chow, Y. Kim, and G. Vegter, A normally elliptic Hamiltonian bifurcation, Z. Angew. Math. Phys. 44 (3) (1993), pp. 389–432]. An example system (the coupled Duffing oscillator) with strong linear coupling and weak local nonlinearity is given for this bifurcation.","PeriodicalId":50564,"journal":{"name":"Dynamical Systems-An International Journal","volume":"38 1","pages":"427 - 452"},"PeriodicalIF":0.5000,"publicationDate":"2023-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The 0:1 resonance bifurcation associated with the supercritical Hamiltonian pitchfork bifurcation\",\"authors\":\"Xing Zhou\",\"doi\":\"10.1080/14689367.2023.2194521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the non-semisimple 0:1 resonance (i.e. the unperturbed equilibrium has two purely imaginary eigenvalues ( and ) and a non-semisimple double-zero one) Hamiltonian bifurcation with one distinguished parameter, which corresponds to the supercritical Hamiltonian pitchfork bifurcation. Based on BCKV singularity theory established by [H.W. Broer, S. -N. Chow, Y. Kim, and G. Vegter, A normally elliptic Hamiltonian bifurcation, Z. Angew. Math. Phys. 44 (3) (1993), pp. 389–432], this bifurcation essentially triggered by the reversible universal unfolding with respect to BCKV-restricted morphisms of the planar non-semisimple singularity (the is regarded as distinguished parameter with respect to the external parameter λ). We first give the plane bifurcation diagram of the integrable Hamiltonian on each level of integral in detail, which is related to the usual supercritical Hamiltonian pitchfork bifurcation. Then, we use the -symmetry generated by the additional pair of imaginary eigenvalues to reconstruct the above plane bifurcation phenomenon caused by the zero eigenvalue pair into the case with two degrees of freedom. Finally, we prove the persistence of typical bifurcation scenarios (e.g. 2-dimensional invariant tori and the symmetric homoclinic orbit) under the small Hamiltonian perturbations, as proposed by [H.W. Broer, S. -N. Chow, Y. Kim, and G. Vegter, A normally elliptic Hamiltonian bifurcation, Z. Angew. Math. Phys. 44 (3) (1993), pp. 389–432]. An example system (the coupled Duffing oscillator) with strong linear coupling and weak local nonlinearity is given for this bifurcation.\",\"PeriodicalId\":50564,\"journal\":{\"name\":\"Dynamical Systems-An International Journal\",\"volume\":\"38 1\",\"pages\":\"427 - 452\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamical Systems-An International Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/14689367.2023.2194521\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamical Systems-An International Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2023.2194521","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
The 0:1 resonance bifurcation associated with the supercritical Hamiltonian pitchfork bifurcation
We consider the non-semisimple 0:1 resonance (i.e. the unperturbed equilibrium has two purely imaginary eigenvalues ( and ) and a non-semisimple double-zero one) Hamiltonian bifurcation with one distinguished parameter, which corresponds to the supercritical Hamiltonian pitchfork bifurcation. Based on BCKV singularity theory established by [H.W. Broer, S. -N. Chow, Y. Kim, and G. Vegter, A normally elliptic Hamiltonian bifurcation, Z. Angew. Math. Phys. 44 (3) (1993), pp. 389–432], this bifurcation essentially triggered by the reversible universal unfolding with respect to BCKV-restricted morphisms of the planar non-semisimple singularity (the is regarded as distinguished parameter with respect to the external parameter λ). We first give the plane bifurcation diagram of the integrable Hamiltonian on each level of integral in detail, which is related to the usual supercritical Hamiltonian pitchfork bifurcation. Then, we use the -symmetry generated by the additional pair of imaginary eigenvalues to reconstruct the above plane bifurcation phenomenon caused by the zero eigenvalue pair into the case with two degrees of freedom. Finally, we prove the persistence of typical bifurcation scenarios (e.g. 2-dimensional invariant tori and the symmetric homoclinic orbit) under the small Hamiltonian perturbations, as proposed by [H.W. Broer, S. -N. Chow, Y. Kim, and G. Vegter, A normally elliptic Hamiltonian bifurcation, Z. Angew. Math. Phys. 44 (3) (1993), pp. 389–432]. An example system (the coupled Duffing oscillator) with strong linear coupling and weak local nonlinearity is given for this bifurcation.
期刊介绍:
Dynamical Systems: An International Journal is a world-leading journal acting as a forum for communication across all branches of modern dynamical systems, and especially as a platform to facilitate interaction between theory and applications. This journal publishes high quality research articles in the theory and applications of dynamical systems, especially (but not exclusively) nonlinear systems. Advances in the following topics are addressed by the journal:
•Differential equations
•Bifurcation theory
•Hamiltonian and Lagrangian dynamics
•Hyperbolic dynamics
•Ergodic theory
•Topological and smooth dynamics
•Random dynamical systems
•Applications in technology, engineering and natural and life sciences