微尺寸PbO对环氧树脂屏蔽γ射线性能的影响

IF 3.2 3区 化学 Q2 POLYMER SCIENCE
e-Polymers Pub Date : 2023-01-01 DOI:10.1515/epoly-2023-0032
D. A. Alorain, M. I. Sayyed, A. Almuqrin, K. Mahmoud
{"title":"微尺寸PbO对环氧树脂屏蔽γ射线性能的影响","authors":"D. A. Alorain, M. I. Sayyed, A. Almuqrin, K. Mahmoud","doi":"10.1515/epoly-2023-0032","DOIUrl":null,"url":null,"abstract":"Abstract A series of polyepoxide resins doped by lead oxide with low concentrations were fabricated in order to study the impacts of low PbO concentrations on the fabricated composites’ physical- and radiation-shielding properties. The epoxide resin was reinforced with the PbO compound with concentrations 0, 5, and 10 wt%. The density measurements affirmed that by elevating the PbO concentration between 0 and 10 wt%, the composites’ density increased from 1.103 to 1.185 g·cm−3. This low-density increase was echoed in the fabricated composites’ radiation-shielding properties, where the Monte Carlo simulation code affirmed a linear attenuation coefficient increase by factors of 230%, 218%, 24%, and 10%, respectively, at 59, 121, 356, and 662 keV. The half-value layer, mean free path, and transmission factor indicated a linear attenuation coefficient enhancement.","PeriodicalId":11806,"journal":{"name":"e-Polymers","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impacts of micro-size PbO on the gamma-ray shielding performance of polyepoxide resin\",\"authors\":\"D. A. Alorain, M. I. Sayyed, A. Almuqrin, K. Mahmoud\",\"doi\":\"10.1515/epoly-2023-0032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A series of polyepoxide resins doped by lead oxide with low concentrations were fabricated in order to study the impacts of low PbO concentrations on the fabricated composites’ physical- and radiation-shielding properties. The epoxide resin was reinforced with the PbO compound with concentrations 0, 5, and 10 wt%. The density measurements affirmed that by elevating the PbO concentration between 0 and 10 wt%, the composites’ density increased from 1.103 to 1.185 g·cm−3. This low-density increase was echoed in the fabricated composites’ radiation-shielding properties, where the Monte Carlo simulation code affirmed a linear attenuation coefficient increase by factors of 230%, 218%, 24%, and 10%, respectively, at 59, 121, 356, and 662 keV. The half-value layer, mean free path, and transmission factor indicated a linear attenuation coefficient enhancement.\",\"PeriodicalId\":11806,\"journal\":{\"name\":\"e-Polymers\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"e-Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/epoly-2023-0032\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/epoly-2023-0032","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

摘要制备了一系列低浓度氧化铅掺杂的聚环氧树脂,以研究低PbO浓度对所制备的复合材料物理屏蔽和辐射屏蔽性能的影响。用浓度为0、5和10的PbO化合物增强环氧树脂 重量%。密度测量证实,通过将PbO浓度提高到0到10 复合材料的密度从1.103增加到1.185 g·cm−3。这种低密度的增加在制造的复合材料的辐射屏蔽性能中得到了响应,其中蒙特卡罗模拟代码确认,在59、121、356和662处,线性衰减系数分别增加了230%、218%、24%和10% keV。半值层、平均自由程和透射因子表明线性衰减系数增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impacts of micro-size PbO on the gamma-ray shielding performance of polyepoxide resin
Abstract A series of polyepoxide resins doped by lead oxide with low concentrations were fabricated in order to study the impacts of low PbO concentrations on the fabricated composites’ physical- and radiation-shielding properties. The epoxide resin was reinforced with the PbO compound with concentrations 0, 5, and 10 wt%. The density measurements affirmed that by elevating the PbO concentration between 0 and 10 wt%, the composites’ density increased from 1.103 to 1.185 g·cm−3. This low-density increase was echoed in the fabricated composites’ radiation-shielding properties, where the Monte Carlo simulation code affirmed a linear attenuation coefficient increase by factors of 230%, 218%, 24%, and 10%, respectively, at 59, 121, 356, and 662 keV. The half-value layer, mean free path, and transmission factor indicated a linear attenuation coefficient enhancement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
e-Polymers
e-Polymers 化学-高分子科学
CiteScore
5.90
自引率
10.80%
发文量
64
审稿时长
6.4 months
期刊介绍: e-Polymers is a strictly peer-reviewed scientific journal. The aim of e-Polymers is to publish pure and applied polymer-science-related original research articles, reviews, and feature articles. It includes synthetic methodologies, characterization, and processing techniques for polymer materials. Reports on interdisciplinary polymer science and on applications of polymers in all areas are welcome. The present Editors-in-Chief would like to thank the authors, the reviewers, the editorial staff, the advisory board, and the supporting organization that made e-Polymers a successful and sustainable scientific journal of the polymer community. The Editors of e-Polymers feel very much engaged to provide best publishing services at the highest possible level.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信